Projection schemes in stochastic finite element analysis
暂无分享,去创建一个
[1] I. Elishakoff,et al. Finite Element Methods for Structures with Large Stochastic Variations , 2003 .
[2] Marcin Kamiński,et al. Stochastic second-order perturbation approach to the stress-based finite element method , 2001 .
[3] Michał Kleiber,et al. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .
[4] R. Ghanem,et al. Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .
[5] N. Wiener. The Homogeneous Chaos , 1938 .
[6] Marc A. Maes,et al. Random Field Modeling of Elastic Properties Using Homogenization , 2001 .
[7] D. Xiu,et al. Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .
[8] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[9] D. Xiu,et al. A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .
[10] Muneo Hori,et al. Three‐dimensional stochastic finite element method for elasto‐plastic bodies , 2001 .
[11] Alex H. Barbat,et al. Monte Carlo techniques in computational stochastic mechanics , 1998 .
[12] M. Shinozuka,et al. Digital simulation of random processes and its applications , 1972 .
[13] H. Matthies,et al. Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .
[14] A. Izenman. Recent Developments in Nonparametric Density Estimation , 1991 .
[15] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[16] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[17] L. Mathelin,et al. A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .
[18] G. Falsone,et al. A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters , 2002 .
[19] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[20] Muneo Hori,et al. Stochastic finite element method for elasto‐plastic body , 1999 .
[21] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[22] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[23] Static and Dynamic Analysis of Non-Linear Uncertain Structures , 2002 .
[24] Roger Ghanem,et al. Numerical solution of spectral stochastic finite element systems , 1996 .
[25] Kok-Kwang Phoon,et al. Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .
[26] P. Nair. On the theoretical foundations of stochastic reduced basis methods , 2001 .
[27] George Em Karniadakis,et al. Predictability and uncertainty in CFD , 2003 .
[28] Martin Ostoja-Starzewski,et al. Stochastic finite elements as a bridge between random material microstructure and global response , 1999 .
[29] Andreas Keese,et al. Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .
[30] M. Ashby,et al. Cellular solids: Structure & properties , 1988 .
[31] P. McCullagh. Tensor Methods in Statistics , 1987 .
[32] Masanobu Shinozuka,et al. Neumann Expansion for Stochastic Finite Element Analysis , 1988 .
[33] Achintya Haldar,et al. Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .
[34] R. Ghanem. Probabilistic characterization of transport in heterogeneous media , 1998 .
[35] A. Sarkar,et al. Mid-frequency structural dynamics with parameter uncertainty , 2001 .
[36] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo Method , 1981 .
[37] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[38] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[39] R. Ghanem,et al. Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .
[40] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[41] R. Ghanem. The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .
[42] A. Keane,et al. Stochastic Reduced Basis Methods , 2002 .
[43] Pol D. Spanos,et al. A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .
[44] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[45] M. Ostoja-Starzewski. Micromechanics as a Basis of Continuum Random Fields , 1994 .