Projection schemes in stochastic finite element analysis

In traditional computational mechanics, it is often assumed that the physical properties of the system under consideration are deterministic. This assumption of determinism forms the basis of most mathematical modeling procedures used to formulate partial differential equations (PDEs) governing the system response. In practice, however, some degere of uncertainty in characterizing virtually any engineering system is inevitable. In a structural system, deterministic characterization of the system properties and its environment may not be desirable due to several reasons, including uncertainty in the material properties due to statistically inhomogeneous microstructure, variations in nominal geometry due to manufacturing tolerances, and uncertainty in loading due to the nondeterministic nature of the operating environment. These uncertainties can be modeled within a probabilistc framework, which leads to PDEs with random coefficients and associated boundary and initial conditions governing the system dynamics. It is implicitly assumed here that uncertainty in the PDE coefficients can be described by random variables or random fields that are constrcuted using experimental data or stochastic micromechanical analysis.

[1]  I. Elishakoff,et al.  Finite Element Methods for Structures with Large Stochastic Variations , 2003 .

[2]  Marcin Kamiński,et al.  Stochastic second-order perturbation approach to the stress-based finite element method , 2001 .

[3]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[4]  R. Ghanem,et al.  Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .

[5]  N. Wiener The Homogeneous Chaos , 1938 .

[6]  Marc A. Maes,et al.  Random Field Modeling of Elastic Properties Using Homogenization , 2001 .

[7]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[8]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[9]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[10]  Muneo Hori,et al.  Three‐dimensional stochastic finite element method for elasto‐plastic bodies , 2001 .

[11]  Alex H. Barbat,et al.  Monte Carlo techniques in computational stochastic mechanics , 1998 .

[12]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[13]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[14]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[15]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[16]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[17]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[18]  G. Falsone,et al.  A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters , 2002 .

[19]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[20]  Muneo Hori,et al.  Stochastic finite element method for elasto‐plastic body , 1999 .

[21]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[22]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[23]  Static and Dynamic Analysis of Non-Linear Uncertain Structures , 2002 .

[24]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[25]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[26]  P. Nair On the theoretical foundations of stochastic reduced basis methods , 2001 .

[27]  George Em Karniadakis,et al.  Predictability and uncertainty in CFD , 2003 .

[28]  Martin Ostoja-Starzewski,et al.  Stochastic finite elements as a bridge between random material microstructure and global response , 1999 .

[29]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[30]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[31]  P. McCullagh Tensor Methods in Statistics , 1987 .

[32]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[33]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[34]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[35]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[36]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[37]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[38]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[39]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[40]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[41]  R. Ghanem The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .

[42]  A. Keane,et al.  Stochastic Reduced Basis Methods , 2002 .

[43]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[44]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[45]  M. Ostoja-Starzewski Micromechanics as a Basis of Continuum Random Fields , 1994 .