Measurement of the 40Ca(α, γ)44Ti reaction relevant for supernova nucleosynthesis

The short-lived nuclide 44 Ti is an important nuclide for the understanding of explosive nucleosynthesis. The main production reaction, 40 Ca(α, γ) 44 Ti, has been studied in inverse kinematics with the recoil mass spectrometer DRAGON located at the TRIUMF-ISAC facility in Vancouver, Canada. The temperature range relevant for α-rich freeze-out during a core-collapse supernova has been covered entirely with a 40 Ca beam of 0.60 to 1.15 MeV/nucleon. All relevant quantities for the calculation of the astrophysical reaction rate have been measured directly. Because of many previously undiscovered resonances, the reaction rate derived from the energy dependent 44 Ti yield is higher than the one based on previous prompt γ-ray studies commonly used in supernova models. The presented new rate results in an increased 44 Ti production in supemovae.

[1]  D. Frekers,et al.  The 40Ca(α, γ)44Ti reaction at DRAGON , 2007 .

[2]  W. Kutschera,et al.  Improved measurement of the {sup 44}Ti half-life from a 14-year long study , 2006 .

[3]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[4]  M. Arnould,et al.  Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond , 2006 .

[5]  Iap,et al.  The Signature of 44Ti in Cassiopeia A Revealed by IBIS/ISGRI on INTEGRAL , 2006, astro-ph/0606736.

[6]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[7]  L. The,et al.  Are 44 Ti-producing supernovae exceptional? , 2006, astro-ph/0601039.

[8]  J. D'auria,et al.  Commissioning the DRAGON facility at ISAC , 2005 .

[9]  A. Ofan,et al.  Study of the supernova nucleosynthesis 40Ca(α,γ)44Ti reaction: progress report , 2005 .

[10]  R. Diehl,et al.  Astrophysical constraints from gamma-ray spectroscopy , 2005, astro-ph/0502324.

[11]  J. Rogers,et al.  Energy loss around the stopping power maximum of Ne, Mg and Na ions in hydrogen gas , 2004 .

[12]  S. Kumagai,et al.  44Ti radioactivity in young supernova remnants: Cas A and SN 1987A , 2003, astro-ph/0311080.

[13]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[14]  J. Rogers,et al.  The DRAGON facility for nuclear astrophysics at TRIUMF-ISAC: design, construction and operation , 2003 .

[15]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[16]  F. Thielemann,et al.  Tables of nuclear cross sections and reaction rates : An addendum to the paper "Astrophysical reaction rates from statistical model calculations" , 2001, nucl-th/0104003.

[17]  E. Boaretto,et al.  atom counting for nuclear astrophysics , 2000 .

[18]  F. Thielemann,et al.  Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.

[19]  Usa,et al.  Capture of a particles by isospin-symmetric nuclei , 2000, nucl-th/0003057.

[20]  W. J. Thompson,et al.  Error analysis for resonant thermonuclear reaction rates , 1999 .

[21]  G. G. Lichti,et al.  Emission from 44Ti associated with a previously unknown Galactic supernova , 1998, Nature.

[22]  H Germany,et al.  The Reaction Rate Sensitivity of Nucleosynthesis in Type II Supernovae , 1998, astro-ph/9809240.

[23]  L. The,et al.  Nuclear Reactions Governing the Nucleosynthesis of 44Ti , 1998, astro-ph/9806211.

[24]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[25]  M. Leising,et al.  Gamma-ray line emission from SN1987A , 1988, Nature.

[26]  D. Frekers,et al.  Identification of quasimolecular resonances in low energy α-40Ca scattering and effects of compound nucleus excitation , 1983 .

[27]  W. R. Dixon,et al.  Q-value of the 40Ca(α, γ)44Ti reaction , 1982 .

[28]  W. R. Dixon,et al.  An isospin-mixed triplet in 44Ti , 1980 .

[29]  R. Sayer Semi-empirical formulas for heavy-ion stripping data , 1977 .

[30]  H. W. Fulbright,et al.  Four-nucleon transfer via the (6Li, d) reaction , 1977 .

[31]  M. Shapiro,et al.  Helium burning of 40Ca , 1977 .

[32]  W. R. Dixon,et al.  Levels of 44 Ti from the 40 Ca(α, γ) 44 Ti reaction , 1977 .

[33]  D. Frekers,et al.  Resonances in low energy40Ca(α, α)-scattering and quasimolecular band in44Ti , 1976 .

[34]  D. Bromley,et al.  The radiative capture reactions 40Ca(α, γ)44Ti and 48Ca(α, γ)52Ti in the region of the giant dipole resonance , 1974 .

[35]  H. W. Fulbright,et al.  (Li6,d) reaction onCa40 , 1974 .

[36]  S. Woosley,et al.  The Explosive Burning of Oxygen and Silicon , 1973 .

[37]  W. R. Dixon,et al.  Study of ^{44}Ti by the ^{40}Ca(a,?)^{44}Ti Reaction , 1971 .

[38]  Herman Feshbach,et al.  The Inelastic Scattering of Neutrons , 1952 .

[39]  G. Fishman,et al.  Gamma-Ray Lines from Young Supernova Remnants , 1969 .

[40]  W. Fowler,et al.  Nuclear Quasi-Equilibrium During Silicon Burning , 1968 .