A method for improving the accuracy of data mining classification algorithms

In this paper we introduce a method called CL.E.D.M. (CLassification through ELECTRE and Data Mining), that employs aspects of the methodological framework of the ELECTRE I outranking method, and aims at increasing the accuracy of existing data mining classification algorithms. In particular, the method chooses the best decision rules extracted from the training process of the data mining classification algorithms, and then it assigns the classes that correspond to these rules, to the objects that must be classified. Three well known data mining classification algorithms are tested in five different widely used databases to verify the robustness of the proposed method.

[1]  Joachim Diederich,et al.  Survey and critique of techniques for extracting rules from trained artificial neural networks , 1995, Knowl. Based Syst..

[2]  Nabil Belacel,et al.  Multicriteria fuzzy classification procedure PROCFTN: methodology and medical application , 2004, Fuzzy Sets Syst..

[3]  Michael N. Vrahatis,et al.  Artificial nonmonotonic neural networks , 2001, Artif. Intell..

[4]  Steven Salzberg,et al.  A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features , 2004, Machine Learning.

[5]  Roman Słowiński,et al.  Rough Classification with Valued Closeness Relation , 1994 .

[6]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[7]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[8]  Peter A. Flach,et al.  Rule induction , 2003 .

[9]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[10]  J. Friedman Multivariate adaptive regression splines , 1990 .

[11]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[12]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[13]  Jean H. Gallier,et al.  Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .

[14]  Saso Dzeroski,et al.  Inductive Logic Programming and Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[15]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[16]  Joshua Zhexue Huang,et al.  Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.

[17]  Peter A. Flach,et al.  Rule Evaluation Measures: A Unifying View , 1999, ILP.

[18]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[19]  G. Shafer,et al.  Algorithmic Learning in a Random World , 2005 .

[20]  Wray L. Buntine,et al.  Graphical models for discovering knowledge , 1996, KDD 1996.

[21]  Roman Słowiński,et al.  The Use of Rough Sets and Fuzzy Sets in MCDM , 1999 .

[22]  J. Ross Quinlan,et al.  Generating Production Rules from Decision Trees , 1987, IJCAI.

[23]  Alex A. Freitas,et al.  A survey of evolutionary algorithms for data mining and knowledge discovery , 2003 .

[24]  M. Pirlot A Common Framework for Describing Some Outranking Methods , 1997 .

[25]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[26]  David J. Hand,et al.  Intelligent Data Analysis: An Introduction , 2005 .

[27]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[28]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[29]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[30]  Shusaku Tsumoto Characteristics of Accuracy and Coverage in Rule Induction , 2003, RSFDGrC.

[31]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[32]  Mei-Ling Shyu,et al.  Handling missing values via decomposition of the conditioned set , 2005, IRI -2005 IEEE International Conference on Information Reuse and Integration, Conf, 2005..

[33]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[34]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[35]  Peter A. Flach,et al.  Ninth International Workshop on Inductive Logic Programming (ILP'99) , 1999 .

[36]  Jeffrey W. Roberts,et al.  遺伝子の分子生物学 = Molecular biology of the gene , 1970 .

[37]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[38]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[39]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[40]  M. Schader,et al.  New Approaches in Classification and Data Analysis , 1994 .