Advanced fibre-reinforced composites for marine renewable energy devices

Abstract This chapter discusses the applications and challenges for glass and carbon fibre composites in marine renewable energy devices. It uses a tidal turbine blade as a case study, describing the nature of the operating environment and resulting loads, the structural design process, material selection, manufacturing techniques and structural health monitoring. The chapter also discusses ongoing research in areas such as the development of new materials, which are better able to cope with high-cycle fatigue loads in marine environments, and improved structural design techniques.

[1]  Benoît Gaurier,et al.  Evaluation of the durability of composite tidal turbine blades , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[3]  E. Droniou,et al.  Update on EMEC activities, resource description, and characterisation of wave-induced velocities in a tidal flow. , 2007 .

[4]  A. D. Crocombe,et al.  Predicting fatigue damage in adhesively bonded joints using a cohesive zone model , 2010 .

[5]  Stephen R Hallett,et al.  A fatigue degradation law for cohesive interface elements – Development and application to composite materials , 2010 .

[6]  Stephen R. Turnock,et al.  Application of bend-twist coupled blades for horizontal axis tidal turbines , 2013 .

[7]  H. N. Narasimha Murthy,et al.  Seawater Durability of Epoxy/Vinyl Ester Reinforced with Glass/Carbon Composites , 2010 .

[8]  Rajnish N. Sharma,et al.  Blade loads on tidal turbines in planar oscillatory flow , 2013 .

[9]  Rajnish N. Sharma,et al.  Characteristics of the turbulence in the flow at a tidal stream power site , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  A. I. Winter,et al.  Differences in fundamental design drivers for wind and tidal turbines , 2011, OCEANS 2011 IEEE - Spain.

[11]  Stephen R Hallett,et al.  Advanced numerical modelling techniques for the structural design of composite tidal turbine blades , 2015 .

[12]  Joseph A. Grand,et al.  Wind Power Blades Energize Composites Manufacturing , 2008 .

[13]  Rajnish N. Sharma,et al.  Characteristics of the Onset Flow Turbulence at a Tidal-Stream Power Site , 2011 .

[14]  F. Thiebaud,et al.  Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems , 2013, Applied Composite Materials.

[15]  Ross A. McAdam,et al.  Optimum geometry for axial flow free stream tidal turbine blades , 2013 .

[16]  Stefanos Giannis,et al.  Utilising fracture mechanics principles for predicting the mixed-mode delamination onset and growth in tapered composite laminates , 2013 .

[17]  Gretchen B. Murri,et al.  Testing and Life Prediction for Composite Rotor Hub Flexbeams , 2013 .

[18]  Peter Fraenkel Windmills below the sea , 2004 .

[19]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[20]  Alexei Winter,et al.  Speed regulated operation for tidal turbines with fixed pitch rotors , 2011, OCEANS'11 MTS/IEEE KONA.

[21]  George Marsh Wave and tidal power — an emerging new market for composites , 2009 .

[22]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[23]  E. Osalusi,et al.  Structure of turbulent flow in EMEC's tidal energy test site , 2009 .

[24]  Joris Degrieck,et al.  Strain Measurements of Composite Laminates with Embedded Fibre Bragg Gratings: Criticism and Opportunities for Research , 2010, Sensors.

[25]  Peter Davies,et al.  Accelerated Aging Tests for Marine Energy Applications , 2014 .

[26]  Herbert J. Sutherland,et al.  Effect of Mean Stress on the Damage of Wind Turbine Blades , 2004 .

[27]  Joshua A. Paquette,et al.  COMPOSITE MATERIALS FOR INNOVATIVE WIND TURBINE BLADES. , 2008 .

[28]  Conchur O Bradaigh,et al.  Design of composite tidal turbine blades , 2013 .

[29]  B. Polagye,et al.  Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA , 2012, IEEE Journal of Oceanic Engineering.

[30]  George Marsh Carbon yachts from the Baltic , 2009 .

[31]  Neil Kelley,et al.  Overview of the TurbSim Stochastic Inflow Turbulence Simulator , 2005 .

[32]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[33]  Michael R. Motley,et al.  Passive control of marine hydrokinetic turbine blades , 2014 .

[34]  Gretchen B. Murri,et al.  Fatigue life methodology for tapered hybrid composite flexbeams , 2006 .

[35]  Davide Tumino,et al.  Simulation of Fatigue Delamination Growth in Composites with Different Mode Mixtures , 2007 .

[36]  Pedro P. Camanho,et al.  Simulation of delamination in composites under high-cycle fatigue , 2007 .

[37]  Suong V. Hoa,et al.  The study of tapered laminated composite structures: a review , 2000 .

[38]  Stephen R Hallett,et al.  Predicting progressive delamination via interface elements , 2008 .

[39]  Conchur O Bradaigh,et al.  A study on the fatigue life of glass reinforced polymer composites for tidal turbine blades , 2011 .

[40]  James F. Manwell,et al.  A review of materials degradation in utility scale wind turbines , 2007 .

[41]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[42]  Peter Coppens Tidal energy – an emerging market for composites , 2014 .

[43]  Hom Nath Dhakal,et al.  Study on T-bolt and pin-loaded bearing strengths and damage accumulation in E-glass/epoxy blade applications , 2015 .