The Joint Action of Entomopathogenic Nematodes Mixtures and Chemical Pesticides on Controlling Helicoverpa armigera (Hübner)

Chemical pesticides are characterized by the rapid impact effect in reducing pest population, while, microbial pesticides need along the latent period to cause a limited reduction of the pest population. Low efficiency of biocides may be due to low compatibility with agrochemicals or poor application of biocide, so, the study carried out to evaluate the possibility of mixing five common chemical insecticides and nematicides with five compatible entomopathogenic nematodes (EPNs). For the control of tomato fruit borer (Helicoverpaarmigera),bioassay revealed that pesticide chlorpyrifos (Pestban 48% EC), chlorpyrifos (Tafaban 48% EC) and flubendiamide (Takumi 20% WG) were applied at the recommended dose.  Flubendiamide was less toxic to EPNs infective juveniles compared to fenamiphos (Dento 40% EC). Moreover, steinernematid species were more sensitive than heterorhabditid species to pesticides recording 49.45% and 43.76%, respectively, after 7 days of exposure. The joint action of tested chemical pesticides with IJs of EPNs in controlling the 5th instar larvae of tomato fruit wormshowed an additive or antagonistic reaction with no evidence of synergistic action. Antagonism reaction was recorded with all fenamiphos combinations;the combination ofabamectin and S. feltiae as well as H. bacteriophora (Ba-1), in addition to, flubendiamide combinations with S. feltiae and H. bacteriophora (Ba-1). While, an additive effect was observed in flubendiamide combinations with S. glaseri, S. carpocapsae and H. bacteriophora (HP 88). In the greenhouse experiment, the application of EPNs alone caused mortality ranged from 28 to 36% for 5th instar larvae. Whereas, the highest larval mortality was observed in descending order for combinations between H. bacteriophora (HP88 strain) with fenamiphos (64.0%), chlorpyrifos (54%) and abamectin (54.0%), while, local isolate, H. bacteriophora (Ba-1 strain) achieved mortality ranged from 40 to 50 % with the tested pesticides. Overall, results indicate the feasibility of the integrated use of these nematode species and chemical pesticides in crop protection.

[1]  A. Azazi,et al.  Field Control of Synanthedon myopaeformis Borkh and Zeuzera pyrina L. Using Entomopathogenic Nematodes, Insecticides and Microbial Agents , 2018, Egyptian Journal of Agronematology.

[2]  A. Koppenhöfer,et al.  Developmental stage affects the interaction of Steinernema carpocapsae and abamectin for the control of Phthorimaea operculella (Lepidoptera, Gelechidae) , 2018, Biological Control.

[3]  C. Griffin,et al.  Transmission Success of Entomopathogenic Nematodes Used in Pest Control , 2018, Insects.

[4]  Devindrappa,et al.  Compatibility of Steinernema carpocapsae and Heterorhabditis indica with insecticides registered against Helicoverpa armigera (Lepidoptera: Noctuidae). , 2017 .

[5]  M. Raheel,et al.  EXPLOITING THE BIOCONTROL POTENTIAL OF ENTOMOPATHOGENIC NEMATODES IN COMBINATION WITH CHEMICALS AGAINST GREATER WAX MOTH ( GALLERIA MELLONELLA L . ) , 2017 .

[6]  S. Trdan,et al.  Compatibility of acaricides with entomopathogenic nematodes ( Steinernema and Heterorhabditis ) , 2017 .

[7]  S. Trdan,et al.  The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. , 2014, Pest management science.

[8]  P. Sharma,et al.  Entomopathogenic nematodes - A review , 2013 .

[9]  S. Trdan,et al.  The Effects of Different Fungicides on the Viability of Entomopathogenic Nematodes Steinernema feltiae (Filipjev), S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida) under Laboratory Conditions , 2012 .

[10]  R. Georgis,et al.  Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. , 2012, Journal of nematology.

[11]  P. Sternberg,et al.  Entomopathogenic nematodes , 2012, Current Biology.

[12]  Shweta Srivastava,et al.  Tomato-A Natural Medicine and Its Health Benefits , 2012 .

[13]  L. Kebin Evaluation of the Impacts on Infection Ability of Entomopathogens Nematodes to Grub, Holotrichia parallela for Three Chemical Pesticides , 2012 .

[14]  D. Bernardi,et al.  Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops , 2010 .

[15]  M. S. Garcia,et al.  Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions , 2010 .

[16]  R. Campos-Herrera,et al.  Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida: Steinernematidae) , 2008 .

[17]  D. Shapiro-Ilan,et al.  Application technology and environmental considerations for use of entomopathogenic nematodes in biological control , 2006 .

[18]  J R Prasifka,et al.  An analysis of using entomopathogenic nematodes against above-ground pests , 2004, Bulletin of Entomological Research.

[19]  S. Davis,et al.  Pharmacokinetic and Pharmacodynamic Issues in the Treatment of Bacterial Infectious Diseases , 2004, European Journal of Clinical Microbiology and Infectious Diseases.

[20]  S. Langton,et al.  The compatibility of the entomopathogenic nematode,Steinernema feltiae, and chemical insecticidesfor the control of the South American leafminer, Liriomyza huidobrensis , 2000, BioControl.

[21]  P. Grewal,et al.  Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with Pesticides and Plant Growth Regulators Used in Glasshouse Plant Production , 2003 .

[22]  R. Vyas,et al.  Performance of Entomopathogenic Nematodes for Management of Gram Pod Borer, Helicoverpa armigera , 2003 .

[23]  R. Gaugler,et al.  Production technology for entomopathogenic nematodes and their bacterial symbionts , 2002, Journal of Industrial Microbiology and Biotechnology.

[24]  L. Lacey Manual of techniques in insect pathology , 1997 .

[25]  M. Patel,et al.  The influence of neuroactive pesticides on the behaviour of entomopathogenic nematodes , 1996, Journal of Helminthology.

[26]  N. Ishibashi,et al.  Effects of Insecticides on Movement, Nictation, and Infectivity of Steinernema carpocapsae. , 1993, Journal of nematology.

[27]  L. Rovesti,et al.  Compatibility of Chemical Pesticides With the Entomopathogenic Nematodes, Steinernema Carpocapsae Weiser and S. Feltiae Filipjev (Nematoda: Steinernematidae) , 1990 .

[28]  R. Gaugler,et al.  Taxonomy and biology of Steinernematidae and Heterorhabditidae. , 1990 .

[29]  Gary P. Fitt,et al.  The Ecology of Heliothis Species in Relation to Agroecosystems , 1989 .

[30]  J. Woodring,et al.  Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques , 1988 .

[31]  L. Rovesti,et al.  Compatibility of Pesticides With the Entomopathogenic Nematode Heterorhabditis Bacteriophora Poinar (Nematoda: Heterorhabditidae) , 1988 .

[32]  J. Webster,et al.  Temperature Effects on the Growth and Virulence of Steinernema feltiae Strains and Heterorhabditis heliothidis. , 1986, Journal of nematology.

[33]  A. Hara,et al.  Development of the Entomogenous Nematode, Neoaplectana carpocapsae (Rhabditida: Steinernematidae), in Insecticide-Killed Beet Armyworm (Lepidoptera: Noctuidae) , 1983 .

[34]  A. Hara,et al.  Toxicity of Selected Organophosphate and Carbamate Pesticides to Infective Juveniles of the Entomogenous Nematode Neoaplectana carpocapsae (Rhabditida: Steinernematidae) , 1983 .

[35]  E. Platzer Nematodes for Biological Control of Insects , 1980 .

[36]  R. Bedding,et al.  A simple technique for the detection o f insect paristic rhabditid nematodes in soil , 1975 .

[37]  M. Eldefrawi,et al.  Toxicological Studies on the Egyptian Cotton Leaf worm, Prodenia litura. VI. Potentiation and Antagonism of Organophosphorus and Carbamate Insecticides , 1966 .

[38]  J. V. Thompson,et al.  A technique for the mass propagation of the DD-136 nematode. , 1964 .

[39]  G. F. White A METHOD FOR OBTAINING INFECTIVE NEMATODE LARVAE FROM CULTURES. , 1927, Science.