Using explosions to power a soft robot.

grasping and walking. Despite their advantages(simplicity of fabrication, actuation, and control; low cost;light weight), pneu-nets have the disadvantage that actuationusing them is slow, in part because the viscosity of air limitsthe rate at which the gas can be delivered through tubes to filland expand the microchannels. Herein, we demonstrate therapid actuation of pneu-nets using a chemical reaction (thecombustion of methane) to generate explosive bursts ofpressure.Althoughthecombustionofhydrocarbonsisubiquitousinthe actuation of hard systems (e.g., in the metal cylinder ofa diesel or spark-ignited engine

[1]  Megan L. McCain,et al.  A tissue-engineered jellyfish with biomimetic propulsion , 2012, Nature Biotechnology.

[2]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[3]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[4]  N. Peters,et al.  Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation , 2011 .

[5]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[6]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[7]  Aaron D. Mazzeo,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[8]  Thomas J McCarthy,et al.  Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  Claire Longuet,et al.  Flame retardancy of silicone-based materials , 2009 .

[10]  Ioannis M. Rekleitis,et al.  The Avatar Project , 2008, IEEE Robotics & Automation Magazine.

[11]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[12]  E de Margerie,et al.  Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV , 2007, Bioinspiration & biomimetics.

[13]  G. Whitesides,et al.  Muscular Thin Films for Building Actuators and Powering Devices , 2007, Science.

[14]  Martin Buehler,et al.  Control and Stability Analysis of Limit Cycles in a Hopping Robot , 2007, IEEE Transactions on Robotics.

[15]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[16]  Rhodri H. Armour,et al.  Jumping robots: a biomimetic solution to locomotion across rough terrain , 2006, Bioinspiration & biomimetics.

[17]  Paolo Fiorini,et al.  Minimalist Jumping Robots for Celestial Exploration , 2003, Int. J. Robotics Res..

[18]  P. Weiss Hop… hop… hopbots!: Designers of small, mobile robots take cues from grasshoppers and frogs , 2001 .

[19]  Fu-Yu Hshieh,et al.  Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers , 1998 .

[20]  G. Andrews,et al.  The burning velocity of methane-air mixtures , 1972 .

[21]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[22]  S. Girois,et al.  Polym. Degrad. Stab. , 1996 .

[23]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[24]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[25]  K. Kuo Principles of combustion , 1986 .

[26]  M. Muir Physical Chemistry , 1888, Nature.

[27]  Bioinspiration & Biomimetics , 2022 .