H2 optimal linear robust sampled-data filtering design using polynomial approach

A new frequency domain approach to robust multi-input-multi-output (MIMO) linear filter design for sampled-data systems is presented. The system and noise models are assumed to be represented by polynomial forms that are not perfectly known except that they belong to a certain set. The optimal design guarantees that the error variance is kept below an upper bound that is minimized for all admissible uncertainties. The design problem is cast in the context of H/sub 2/ via the polynomial matrix representation of systems with norm bounded unstructured uncertainties. The sampled-data mix of continuous and discrete time systems is handled by means of a lifting technique; however, it does not increase the dimensionality or alter the computational cost of the solution. The setup adopted allows dealing with several filtering problems. A simple deconvolution example illustrates the procedure.

[1]  Isaac Yaesh,et al.  Robust H∞ filtering of stationary continuous-time linear systems with stochastic uncertainties , 2001, IEEE Trans. Autom. Control..

[2]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Gary J. Balas,et al.  μ-analysis and synthesis toolbox: for use with Matlab , 1994 .

[4]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[5]  Pramod P. Khargonekar,et al.  H 2 optimal control for sampled-data systems , 1991 .

[6]  J. P. Keller,et al.  A new approach to the discretization of continuous-time controllers , 1990, 1990 American Control Conference.

[7]  Uri Shaked,et al.  Robust H2 filtering for uncertain systems with measurable inputs , 1999, IEEE Trans. Signal Process..

[8]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[9]  P. Khargonekar,et al.  H∞ control and filtering for sampled-data systems , 1993, IEEE Trans. Autom. Control..

[10]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[11]  A. P. Roberts Polynomial optimization of stochastic feedback control for unstable plants , 1987 .

[12]  Thomas Kailath,et al.  On linear H∞ equalization of communication channels , 2000, IEEE Trans. Signal Process..

[13]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[14]  M. Grimble Polynomial systems approach to optimal linear filtering and prediction , 1985 .

[15]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..

[16]  Heinz Unbehauen,et al.  Robust H2/H∞-state estimation for systems with error variance constraints: the continuous-time case , 1999, IEEE Trans. Autom. Control..

[17]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[18]  M. M. Newmann,et al.  Polynomial approach to Wiener filtering , 1988 .

[19]  Anders Ahlén,et al.  Wiener filter design using polynomial equations , 1991, IEEE Trans. Signal Process..

[20]  J. Jeek,et al.  Paper: Efficient algorithm for matrix spectral factorization , 1985 .

[21]  Shinji Hara,et al.  Relating H2 and H∞-norm bounds for sampled-data systems , 1997, IEEE Trans. Autom. Control..

[22]  P. Peres,et al.  LMI approach to the mixed H/sub 2//H/sub /spl infin// filtering design for discrete-time uncertain systems , 2001 .

[23]  Michael J. Grimble Robust filter design for uncertain systems defined by both hard and soft bounds , 1996, IEEE Trans. Signal Process..

[24]  S. Hara,et al.  Worst-case analysis and design of sampled-data control systems , 1993, IEEE Trans. Autom. Control..

[25]  V. Kučera,et al.  Discrete Linear Control: The Polynomial Equation Approach , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Anders Ahlén,et al.  A probabilistic approach to multivariable robust filtering and open-loop control , 1995, IEEE Trans. Autom. Control..

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[28]  David Q. Mayne,et al.  A solution of the smoothing problem for linear dynamic systems , 1966, Autom..

[29]  Zhi Ding,et al.  Invertibility of sampled data systems , 2000 .

[30]  A. Schaft,et al.  Robust Filtering of Stationary Continuous-Time Linear Systems With Stochastic Uncertainties , 2001 .

[31]  J. Doná,et al.  Optimal parallel model solutions using the polynomial approach , 1996 .