Probabilistic One-Dimensional Inversion of Frequency-Domain Electromagnetic Data Using a Kalman Ensemble Generator

Frequency-domain electromagnetic (FDEM) data of the subsurface are determined by electrical conductivity and magnetic susceptibility. We apply a Kalman Ensemble generator (KEG) to one-dimensional probabilistic multi-layer inversion of FDEM data to derive conductivity and susceptibility simultaneously. The KEG provides an efficient alternative to an exhaustive Bayesian framework for FDEM inversion, including a measure for the uncertainty of the inversion result. Additionally, the method provides a measure for the depth below which the measurement is insensitive to the parameters of the subsurface. This so-called depth of investigation is derived from ensemble covariances. A synthetic and a field data example reveal how the KEG approach can be applied to FDEM data and how FDEM calibration data and prior beliefs can be combined in the inversion procedure. For the field data set, many inversions for one-dimensional subsurface models are performed at neighbouring measurement locations. Assuming identical prior models for these inversions, we save computational time by re-using the initial KEG ensemble across all measurement locations.

[1]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[2]  D. Guptasarma,et al.  New digital linear filters for Hankel J0 and J1 transforms , 1997 .

[3]  Philippe De Smedt,et al.  Low signal-to-noise FDEM in-phase data : practical potential for magnetic susceptibility modelling , 2018 .

[4]  A. Tarantola,et al.  Linear inverse Gaussian theory and geostatistics , 2006 .

[5]  Philippe De Smedt,et al.  Evaluating corrections for a horizontal offset between sensor and position data for surveys on land , 2015, Precision Agriculture.

[6]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[7]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[8]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[9]  Francis wyffels,et al.  Identifying and removing micro-drift in ground-based electromagnetic induction data , 2016 .

[10]  Liangping Li,et al.  An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering , 2011 .

[11]  Philippe De Smedt,et al.  Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset , 2013 .

[12]  D. Oldenburg,et al.  Estimating depth of investigation in DC resistivity and IP surveys , 1999 .

[13]  Daan Hanssens,et al.  Frequency-Domain Electromagnetic Forward and Sensitivity Modeling: Practical Aspects of Modeling a Magnetic Dipole in a Multilayered Half-Space , 2019, IEEE Geoscience and Remote Sensing Magazine.

[14]  Philippe De Smedt,et al.  Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration , 2014 .

[15]  Bruce D. Smith,et al.  Calibration and filtering strategies for frequency domain electromagnetic data , 2010 .

[16]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[17]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[18]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[19]  Haoping Huang,et al.  Airborne resistivity and susceptibility mapping in magnetically polarizable areas , 2000 .

[20]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[21]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[22]  Esben Auken,et al.  A Global Measure for Depth of Investigation , 2010 .

[23]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[24]  Mark E. Everett,et al.  Near-Surface Applied Geophysics , 2013 .

[25]  Johan Alexander Huisman,et al.  Three‐dimensional imaging of subsurface structural patterns using quantitative large‐scale multiconfiguration electromagnetic induction data , 2014 .

[26]  J. D. Mcneill Electromagnetic Terrain Conduc-tivity Measurement at Low Induction Numbers , 1980 .

[27]  Apostolos Sarris,et al.  Mapping of quadrature magnetic susceptibility/magnetic viscosity of soils by using multi-frequency EMI , 2015 .

[28]  Yutaka Sasaki,et al.  Multidimensional inversion of loop-loop frequency-domain EM data for resistivity and magnetic susceptibility , 2010 .

[29]  Niklas Linde,et al.  On structure-based priors in Bayesian geophysical inversion , 2017 .

[30]  Douglas W. Oldenburg,et al.  Simultaneous 1D inversion of loop loop electromagnetic data for magnetic susceptibility and electrical conductivity , 2003 .

[31]  Jonathan E. Nyquist,et al.  Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability , 1998 .

[32]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[33]  Philippe De Smedt,et al.  An efficient calibration procedure for correction of drift in EMI survey data , 2014 .

[34]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[35]  Jean Marie Linhart,et al.  Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example , 2013, SIAM Rev..

[36]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[37]  Wolfgang Nowak,et al.  Best unbiased ensemble linearization and the quasi‐linear Kalman ensemble generator , 2009 .