On One-Sided, D-Chaotic CA Without Fixed Points, Having Continuum of Periodic Points With Period 2 and Topological Entropy log(p) for Any Prime p

A method is known by which any integer \(\, n\geq2\,\) in a metric Cantor space of right-infinite words \(\,\tilde{A}_{n}^{\,\mathbb N}\,\) gives a construction of a non-injective cellular automaton \(\,(\tilde{A}_{n}^{\,\mathbb N},\,\tilde{F}_{n}),\,\) which is chaotic in Devaney sense, has a radius \(\, r=1,\,\) continuum of fixed points and topological entropy \(\, log(n).\,\) As a generalization of this method we present for any integer \(\, n\geq2,\,\) a construction of a cellular automaton \(\,(A_{n}^{\,\mathbb{N}},\, F_{n}),\,\) which has the listed properties of \(\,(\tilde{A}_{n}^{\,\mathbb N},\,\tilde{F}_{n}),\,\) but has no fixed points and has continuum of periodic points with the period 2. The construction is based on properties of cellular automaton introduced here \(\,(B^{\,\mathbb N},\, F)\,\) with radius \(1\) defined for any prime number \(\, p.\,\) We prove that \(\,(B^{\,\mathbb N},\, F)\,\) is non-injective, chaotic in Devaney sense, has no fixed points, has continuum of periodic points with the period \(2\) and topological entropy \(\, log(p).\,\)

[1]  T. K. Subrahmonian Moothathu Set of periods of additive cellular automata , 2006, Theor. Comput. Sci..

[2]  M. Delorme,et al.  Cellular automata : a parallel model , 1999 .

[3]  Luigi Acerbi,et al.  Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..

[4]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[5]  Petr Kůrka,et al.  Topological dynamics of one-dimensional cellular automata , 2007 .

[6]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[7]  Enrico Formenti,et al.  Periodic Orbits and Dynamical Complexity in Cellular Automata , 2013, Fundam. Informaticae.

[8]  Enrico Formenti,et al.  Some results about the chaotic behavior of cellular automata , 2005, Theor. Comput. Sci..

[9]  P. Walters Introduction to Ergodic Theory , 1977 .

[10]  Alberto Dennunzio,et al.  Strictly Temporally Periodic Points in Cellular Automata , 2012, AUTOMATA & JAC.

[11]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[12]  Wit Forys,et al.  On One-Sided, D-Chaotic Cellular Automaton, Having Continuum of Fixed Points and Topological Entropy log(3) , 2013, J. Cell. Autom..

[13]  Bruno Codenotti,et al.  TRANSITIVE CELLULAR AUTOMATA ARE SENSITIVE , 1996 .

[14]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[15]  Alejandro Maass,et al.  Combinatorial constructions associated to the dynamics of one-sided cellular automata , 2003, Theor. Comput. Sci..

[16]  S. Koçak,et al.  Chaos in product maps , 2010 .

[17]  Wit Forys,et al.  An Example of One-sided, D-chaotic CA Over Four Elementary Alphabet, Which is Not E-chaotic and Not Injective , 2011, J. Cell. Autom..

[18]  Alejandro Maass,et al.  Expansive invertible onesided cellular automata , 2000 .

[19]  Pietro Di Lena,et al.  Row Subshifts and Topological Entropy of Cellular Automata , 2007, J. Cell. Autom..

[20]  Pietro Di Lena On Computing the Topological Entropy of One-sided Cellular Automata , 2007, J. Cell. Autom..

[21]  Mike Boyle,et al.  Periodic points for onto cellular automata , 1999 .

[22]  Masakazu Nasu The dynamics of expansive invertible onesided cellular automata , 2002 .

[23]  Mike Boyle,et al.  A dimension group for local homeomorphisms and endomorphisms of onesided shifts fo finite type. , 1997 .

[24]  Enrico Formenti,et al.  On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..

[25]  Expansive automorphisms and expansive endomorphisms of the shift : a survey (Dynamics of Complex Systems) , 2004 .

[26]  Wit Forys,et al.  On One-Sided, D-Chaotic Cellular Automata, Having Continuum of Fixed Points and Topological Entropy log (p) for any Prime p3 , 2012, J. Cell. Autom..

[27]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[28]  François Blanchard,et al.  Dynamical properties of expansive one-sided cellular automata , 1997 .