On One-Sided, D-Chaotic CA Without Fixed Points, Having Continuum of Periodic Points With Period 2 and Topological Entropy log(p) for Any Prime p
暂无分享,去创建一个
[1] T. K. Subrahmonian Moothathu. Set of periods of additive cellular automata , 2006, Theor. Comput. Sci..
[2] M. Delorme,et al. Cellular automata : a parallel model , 1999 .
[3] Luigi Acerbi,et al. Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..
[4] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[5] Petr Kůrka,et al. Topological dynamics of one-dimensional cellular automata , 2007 .
[6] Petr Kůrka,et al. Topological and symbolic dynamics , 2003 .
[7] Enrico Formenti,et al. Periodic Orbits and Dynamical Complexity in Cellular Automata , 2013, Fundam. Informaticae.
[8] Enrico Formenti,et al. Some results about the chaotic behavior of cellular automata , 2005, Theor. Comput. Sci..
[9] P. Walters. Introduction to Ergodic Theory , 1977 .
[10] Alberto Dennunzio,et al. Strictly Temporally Periodic Points in Cellular Automata , 2012, AUTOMATA & JAC.
[11] B. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .
[12] Wit Forys,et al. On One-Sided, D-Chaotic Cellular Automaton, Having Continuum of Fixed Points and Topological Entropy log(3) , 2013, J. Cell. Autom..
[13] Bruno Codenotti,et al. TRANSITIVE CELLULAR AUTOMATA ARE SENSITIVE , 1996 .
[14] J. Banks,et al. On Devaney's definition of chaos , 1992 .
[15] Alejandro Maass,et al. Combinatorial constructions associated to the dynamics of one-sided cellular automata , 2003, Theor. Comput. Sci..
[16] S. Koçak,et al. Chaos in product maps , 2010 .
[17] Wit Forys,et al. An Example of One-sided, D-chaotic CA Over Four Elementary Alphabet, Which is Not E-chaotic and Not Injective , 2011, J. Cell. Autom..
[18] Alejandro Maass,et al. Expansive invertible onesided cellular automata , 2000 .
[19] Pietro Di Lena,et al. Row Subshifts and Topological Entropy of Cellular Automata , 2007, J. Cell. Autom..
[20] Pietro Di Lena. On Computing the Topological Entropy of One-sided Cellular Automata , 2007, J. Cell. Autom..
[21] Mike Boyle,et al. Periodic points for onto cellular automata , 1999 .
[22] Masakazu Nasu. The dynamics of expansive invertible onesided cellular automata , 2002 .
[23] Mike Boyle,et al. A dimension group for local homeomorphisms and endomorphisms of onesided shifts fo finite type. , 1997 .
[24] Enrico Formenti,et al. On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..
[25] Expansive automorphisms and expansive endomorphisms of the shift : a survey (Dynamics of Complex Systems) , 2004 .
[26] Wit Forys,et al. On One-Sided, D-Chaotic Cellular Automata, Having Continuum of Fixed Points and Topological Entropy log (p) for any Prime p3 , 2012, J. Cell. Autom..
[27] M. Mirzakhani,et al. Introduction to Ergodic theory , 2010 .
[28] François Blanchard,et al. Dynamical properties of expansive one-sided cellular automata , 1997 .