An efficient implementation of a trust region method for box constrained optimization

The present research deals with a trust-region-based procedure to solve box constrained optimization problems. Our procedure takes the advantage of the compact limited memory BFGS update formula together with an adaptive radius strategy. This adaptive technique leads to decreasing the number of solved subproblems and the total number of iterations, while utilizing the structure of limited memory quasi-Newton formula helps us to handle large-scale problems. Using classical assumptions, we prove that our method is a global convergence to first-order stationary points. Preliminary numerical experiments indicate that our new approach is considerably promising to solve box constrained optimization problems, especially for large-scale ones.

[1]  J. J. Moré,et al.  On the identification of active constraints , 1988 .

[2]  D. F. Shanno,et al.  Matrix conditioning and nonlinear optimization , 1978, Math. Program..

[3]  Masoud Ahookhosh,et al.  Computers and Mathematics with Applications a Nonmonotone Trust Region Method with Adaptive Radius for Unconstrained Optimization Problems , 2022 .

[4]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[5]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[6]  Annick Sartenaer,et al.  Automatic Determination of an Initial Trust Region in Nonlinear Programming , 1997, SIAM J. Sci. Comput..

[7]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[8]  M. Fukushima,et al.  A modified BFGS method and its global convergence in nonconvex minimization , 2001 .

[9]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[10]  Jorge Nocedal,et al.  Combining Trust Region and Line Search Techniques , 1998 .

[11]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[12]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[13]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[14]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[15]  Jinhua Guo,et al.  A new trust region method with adaptive radius , 2008, Comput. Optim. Appl..

[16]  Linda Kaufman Reduced Storage, Quasi-Newton Trust Region Approaches to Function Optimization , 1999, SIAM J. Optim..

[17]  Nicholas I. M. Gould,et al.  Sensitivity of trust-region algorithms to their parameters , 2005, 4OR.

[18]  Zhenjun Shi,et al.  A new trust region method for unconstrained optimization , 2008 .

[19]  David F. Shanno,et al.  An Infeasible-Interior-Point Method for Linear Complementarity Problems , 1997, SIAM J. Optim..

[20]  Li-Zhi Liao,et al.  An adaptive trust region method and its convergence , 2002 .

[21]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[22]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[23]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.