A Selective Review on Recent Development of Displacement-Based Laminated Plate Theories

[1]  Tarun Kant,et al.  Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models , 2000 .

[2]  Santosh Kapuria,et al.  Assessment of coupled 1D models for hybrid piezoelectric layered functionally graded beams , 2006 .

[3]  E. Carrera TRANSVERSE NORMAL STRAIN EFFECTS ON THERMAL STRESS ANALYSIS OF HOMOGENEOUS AND LAYERED PLATES , 2005 .

[4]  Santosh Kapuria,et al.  An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading , 2003 .

[5]  Maenghyo Cho,et al.  Improved Mindlin Plate Stress Analysis for Laminated Composites in Finite Element Method , 1997 .

[6]  J. Reddy Analysis of functionally graded plates , 2000 .

[7]  Tarun Kant,et al.  Two shear deformable finite element models for buckling analysis of skew fibre-reinforced composite and sandwich panels , 1999 .

[8]  H. Matsunaga Free vibration and stability of laminated composite circular arches subjected to initial axial stress , 2004 .

[9]  Hiroyuki Matsunaga,et al.  Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory , 2005 .

[10]  K. Swaminathan,et al.  Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates , 2008 .

[11]  Chen Wanji,et al.  Refined global–local higher‐order theory and finite element for laminated plates , 2007 .

[12]  P. C. Dumir,et al.  An efficient coupled layerwise theory for static analysis of piezoelectric sandwich beams , 2003 .

[13]  Chen Wanji,et al.  Free vibration of laminated composite and sandwich plates using global–local higher-order theory , 2006 .

[14]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[15]  Jinho Oh,et al.  A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviors , 2004 .

[16]  M. Nataraja,et al.  Bending of sandwich plates with anti-symmetric angle-ply face sheets – Analytical evaluation of higher order refined computational models , 2006 .

[17]  Tarun Kant,et al.  Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory , 2002 .

[18]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[19]  E. Carrera,et al.  CLOSED-FORM SOLUTIONS TO ASSESS MULTILAYERED-PLATE THEORIES FOR VARIOUS THERMAL STRESS PROBLEMS , 2004 .

[20]  K. Y. Sze,et al.  Predictor–corrector procedures for analysis of laminated plates using standard Mindlin finite element models , 2000 .

[21]  Maenghyo Cho,et al.  An efficient higher-order plate theory for laminated composites , 1992 .

[22]  T. Kant,et al.  A HIGHER-ORDER FACET QUADRILATERAL COMPOSITE SHELL ELEMENT , 1997 .

[23]  Hiroyuki Matsunaga,et al.  Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading , 2003 .

[24]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[25]  Dahsin Liu,et al.  GENERALIZED LAMINATE THEORIES BASED ON DOUBLE SUPERPOSITION HYPOTHESIS , 1997 .

[26]  Santosh Kapuria,et al.  Nonlinear zigzag theory for electrothermomechanical buckling of piezoelectric composite and sandwich plates , 2006 .

[27]  R. A. Shenoi,et al.  A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates , 2005 .

[28]  Hiroyuki Matsunaga,et al.  Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading , 2007 .

[29]  R. A. Shenoi,et al.  Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory , 2002 .

[30]  Song Cen,et al.  A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates , 2002 .

[31]  Hiroyuki Matsunaga,et al.  Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory , 2000 .

[32]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[33]  Erasmo Carrera,et al.  Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices , 2002 .

[34]  K. Liew,et al.  Buckling of folded plate structures subjected to partial in‐plane edge loads by the FSDT meshfree Galerkin method , 2006 .

[35]  Erasmo Carrera,et al.  Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations , 2002 .

[36]  Tarun Kant,et al.  Analytical solution to the dynamic analysis of laminated beams using higher order refined theory , 1997 .

[37]  Marco Di Sciuva,et al.  A third-order triangular multilayered plate finite element with continuous interlaminar stresses. , 1995 .

[38]  Abdul Hamid Sheikh,et al.  Buckling of Laminated Composite Plates by a New Element Based on Higher Order Shear Deformation Theory , 2003 .

[39]  Tarun Kant,et al.  Free vibration of composite and sandwich laminates with a higher-order facet shell element , 2004 .

[40]  K. Swaminathan,et al.  Higher order refined computational model with 12 degrees of freedom for the stress analysis of antisymmetric angle-ply plates – analytical solutions , 2007 .

[41]  H. Matsunaga Vibration of cross-ply laminated composite plates subjected to initial in-plane stresses , 2002 .

[42]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[43]  Tarun Kant,et al.  Transient dynamics of laminated beams: an evaluation with a higher-order refined theory , 1998 .

[44]  Hiroyuki Matsunaga,et al.  VIBRATION AND BUCKLING OF MULTILAYERED COMPOSITE BEAMS ACCORDING TO HIGHER ORDER DEFORMATION THEORIES , 2001 .

[45]  Chen Wanji,et al.  An efficient higher-order theory and finite element for laminated plates subjected to thermal loading , 2006 .

[46]  Tarun Kant,et al.  Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory , 2001 .

[47]  Yogesh M. Desai,et al.  Analytical solutions for vibrations of laminated and sandwich plates using mixed theory , 2004 .

[48]  Santosh Kapuria,et al.  An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers , 2001 .

[49]  Marco Di Sciuva,et al.  Multilayered anisotropic plate models with continuous interlaminar stresses , 1992 .

[50]  Santosh Kapuria,et al.  AN EFFICIENT HIGHER-ORDER ZIGZAG THEORY FOR LAMINATED PLATES SUBJECTED TO THERMAL LOADING , 2004 .

[51]  Hidenori Murakami,et al.  A high-order laminated plate theory with improved in-plane responses☆ , 1987 .

[52]  Ugo Icardi,et al.  Co plate element for global/local analysis of multilayered composites, based on a 3D zig-zag model and strain energy updating , 2005 .

[53]  Santosh Kapuria,et al.  Nonlinear coupled zigzag theory for buckling of hybrid piezoelectric plates , 2006 .

[54]  Santosh Kapuria,et al.  Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams , 2004 .

[55]  A. H. Sheikh,et al.  Analysis of Laminated Sandwich Plates Based on Interlaminar Shear Stress Continuous Plate Theory , 2005 .

[56]  Maenghyo Cho,et al.  Four-noded finite element post-process method using a displacement field of higher-order laminated composite plate theory , 1996 .

[57]  Hiroyuki Matsunaga,et al.  Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories , 2002 .

[58]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[59]  H. Matsunaga,et al.  Effects of higher-order deformations on in-plane vibration and stability of thick circular rings , 1997 .

[60]  Chen Wanji,et al.  A study of global–local higher-order theories for laminated composite plates , 2007 .

[61]  Zengjie Ge,et al.  A refined discrete triangular Mindlin element for laminated composite plates , 2002 .

[62]  M. D. Sciuva,et al.  BENDING, VIBRATION AND BUCKLING OF SIMPLY SUPPORTED THICK MULTILAYERED ORTHOTROPIC PLATES: AN EVALUATION OF A NEW DISPLACEMENT MODEL , 1986 .

[63]  Hiroyuki Matsunaga,et al.  Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory , 2006 .

[64]  Hiroyuki Matsunaga,et al.  A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings , 2004 .

[65]  Erasmo Carrera,et al.  A unified formulation to assess theories of multilayered plates for various bending problems , 2005 .

[66]  Dahsin Liu,et al.  A laminate theory based on global–local superposition , 1995 .

[67]  Erasmo Carrera,et al.  A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates , 2000 .

[68]  Abdul Hamid Sheikh,et al.  A new triangular element to model inter-laminar shear stress continuous plate theory , 2004 .

[69]  Zhen Wu,et al.  Refined laminated composite plate element based on global–local higher-order shear deformation theory , 2005 .

[70]  Ahmed K. Noor,et al.  Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory , 1998 .

[71]  Santosh Kapuria,et al.  A coupled zigzag theory for the dynamics of piezoelectric hybrid cross-ply plates , 2005 .

[72]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[73]  Abdul Hamid Sheikh,et al.  A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates , 2003 .

[74]  Maenghyo Cho,et al.  Higher order zig-zag plate theory under thermo-electric-mechanical loads combined , 2003 .

[75]  Hiroyuki Matsunaga,et al.  Assessment of a global higher-order deformation theory for laminated composite and sandwich plates , 2002 .

[76]  J. Whitney,et al.  The Effect of Transverse Shear Deformation on the Bending of Laminated Plates , 1969 .

[77]  A. H. Shah,et al.  Natural Vibrations of Laminated and Sandwich Plates , 2004 .

[78]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[79]  Ugo Icardi,et al.  Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up , 1998 .

[80]  K. Y. Sze,et al.  Finite element model with continuous transverse shear stress for composite laminates in cylindrical bending , 1998 .

[81]  Hiroyuki Matsunaga,et al.  Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses , 2001 .

[82]  Luciano Demasi Refined multilayered plate elements based on Murakami zig–zag functions , 2005 .