A multiscale framework for affine invariant pattern recognition and registration

This thesis presents a multiscale framework for the construction of affine invariant pattern recognition and registration methods. The idea in the introduced approach is to extend the given pattern to a set of affine covariant versions, each carrying slightly different information, and then to apply known affine invariants to each of them separately. The key part of the framework is the construction of the affine covariant set, and this is done by combining several scaled representations of the original pattern. The advantages compared to previous approaches include the possibility of many variations and the inclusion of spatial information on the patterns in the features. The application of the multiscale framework is demonstrated by constructing several new affine invariant methods using different preprocessing techniques, combination schemes, and final recognition and registration approaches. The techniques introduced are briefly described from the perspective of the multiscale framework, and further treatment and properties are presented in the corresponding original publications. The theoretical discussion is supported by several experiments where the new methods are compared to existing approaches. In this thesis the patterns are assumed to be gray scale images, since this is the main application where affine relations arise. Nevertheless, multiscale methods can also be applied to other kinds of patterns where an affine relation is present. An additional application of one multiscale based technique in convexity measurements is introduced. The method, called multiscale autoconvolution, can be used to build a convexity measure which is a descriptor of object shape. The proposed measure has two special features compared to existing approaches. It can be applied directly to gray scale images approximating binary objects, and it can be easily modified to produce a number of measures. The new measure is shown to be straightforward to evaluate for a given shape, and it performs well in the applications, as demonstrated by the experiments in the original paper. The layout of this page will be fished by ACTA

[1]  Zhengwei Yang,et al.  Cross-Weighted Moments and Affine Invariants for Image Registration and Matching , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[3]  Esa Rahtu,et al.  Multiscale Autoconvolution Histograms for Affine Invariant Pattern Recognition , 2006, BMVC.

[4]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[5]  Janne Heikkilä Multi-Scale Autoconvolution for Affine Invariant Pattern Recognition , 2002, ICPR.

[6]  Jan Flusser,et al.  Generalized affine moment invariants for object recogn , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[7]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Isidore Rigoutsos,et al.  Well-behaved, tunable 3D-affine invariants , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[9]  M. Rodrigues Invariants for pattern recognition and classification , 2000 .

[10]  Esa Rahtu,et al.  A New Affine Invariant Image Transform Based on Ridgelets , 2006, BMVC.

[11]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[12]  Minh N. Do,et al.  The finite ridgelet transform for image representation , 2003, IEEE Trans. Image Process..

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  C. Schmid,et al.  Description of Interest Regions with Center-Symmetric Local Binary Patterns , 2006, ICVGIP.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Esa Rahtu,et al.  A New Efficient Method for Producing Global Affine Invariants , 2005, ICIAP.

[17]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[18]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  A. Sawchuk,et al.  Fundamental Limitations on Projective Invariants of Planar Curves , 1995 .

[20]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[21]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[23]  King-Sun Fu,et al.  A Step Towards Unification of Syntactic and Statistical Pattern Recognition , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Marc Schael,et al.  Invariant grey-scale features for 3D sensor-data , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[25]  Thomas H. Reiss,et al.  The revised Fundamental Theorem of Moment Invariants , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[27]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Mahmoud I. Khalil,et al.  A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Janne Heikkilä,et al.  Pattern matching with affine moment descriptors , 2004, Pattern Recognit..

[30]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Alexander Kadyrov,et al.  Affine invariant features from the trace transform , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Jan Flusser,et al.  Graph method for generating affine moment invariants , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[33]  Esa Rahtu,et al.  Affine invariant pattern recognition using multiscale autoconvolution , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[35]  Qi Jin,et al.  A new method of extracting invariants under affine transform , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[36]  O. Firschein,et al.  Syntactic pattern recognition and applications , 1983, Proceedings of the IEEE.

[37]  B. Rat,et al.  Pattern Classification and Machine Learning , .

[38]  Esa Rahtu,et al.  A New Method for Affine Registration of Images and Point Sets , 2005, SCIA.

[39]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[40]  Jezekiel Ben-Arie,et al.  Pictorial Recognition of Objects Employing Affine Invariance in the Frequency Domain , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[42]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[43]  Esa Rahtu,et al.  Affine registration with multi-scale autoconvolution , 2005, IEEE International Conference on Image Processing 2005.

[44]  Hans Burkhardt,et al.  General-purpose object recognition in 3D volume data sets using gray-scale invariants - classification of airborne pollen-grains recorded with a confocal laser scanning microscope , 2002, Object recognition supported by user interaction for service robots.

[45]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[46]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[48]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[49]  Jan Flusser,et al.  Affine Normalization of Symmetric Objects , 2005, ACIVS.

[50]  Esa Rahtu,et al.  A new convexity measure based on a probabilistic interpretation of images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Esa Rahtu,et al.  Properties of Patch Based Approaches for the Recognition of Visual Object Classes , 2006, DAGM-Symposium.

[52]  Alexander Kadyrov,et al.  Affine Parameter Estimation from the Trace Transform , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  I. Bárány,et al.  convex sets , 2007 .

[54]  Paul L. Rosin,et al.  A new convexity measure for polygons , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Christine L. Mumford,et al.  A symmetric convexity measure , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[56]  Esa Rahtu,et al.  Convexity recognition using multi-scale autoconvolution , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[57]  Jia-Lin Chen,et al.  Unsupervised texture segmentation using multichannel decomposition and hidden Markov models , 1995, IEEE Trans. Image Process..

[58]  Esa Rahtu,et al.  Nonlinear Functionals in the Construction of Multiscale Affine Invariants , 2007, SCIA.

[59]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[60]  Mahmoud I. Khalil,et al.  Affine invariants for object recognition using the wavelet transform , 2002, Pattern Recognit. Lett..

[61]  Thomas H. Reiss,et al.  Recognizing Planar Objects Using Invariant Image Features , 1993, Lecture Notes in Computer Science.

[62]  Dinggang Shen,et al.  Generalized Affine Invariant Image Normalization , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Satosi Watanabe,et al.  Pattern Recognition: Human and Mechanical , 1985 .