Mating Type and the Genetic Basis of Self-Fertility in the Model Fungus Aspergillus nidulans

[1]  F. Lutzoni,et al.  DNA Sequence Characterization and Molecular Evolution of MAT1 and MAT2 Mating-Type Loci of the Self-Compatible Ascomycete Mold Neosartorya fischeri , 2007, Eukaryotic Cell.

[2]  S. Krappmann Gene targeting in filamentous fungi: the benefits of impaired repair , 2007 .

[3]  J. Heitman,et al.  Sex in fungi: molecular determination and evolutionary implications. , 2007 .

[4]  P. Dyer Sexual Reproduction and Significance of MAT in the Aspergilli , 2007 .

[5]  T. G. Mitchell,et al.  Virulence Attributes and Hyphal Growth of C. neoformans Are Quantitative Traits and the MATα Allele Enhances Filamentation , 2006, PLoS genetics.

[6]  R. Fischer,et al.  The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans , 2006, Molecular microbiology.

[7]  Jae-Hyuk Yu Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. , 2006, Journal of microbiology.

[8]  K. Borkovich,et al.  Pheromones Are Essential for Male Fertility and Sufficient To Direct Chemotropic Polarized Growth of Trichogynes during Mating in Neurospora crassa , 2006, Eukaryotic Cell.

[9]  S. Osmani,et al.  A Versatile and Efficient Gene-Targeting System for Aspergillus nidulans , 2006, Genetics.

[10]  S. Pöggeler,et al.  Pheromones and Pheromone Receptors Are Required for Proper Sexual Development in the Homothallic Ascomycete Sordaria macrospora , 2006, Genetics.

[11]  U. Kück,et al.  Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus , 2006, Molecular Genetics and Genomics.

[12]  B. Turgeon,et al.  Mating-Type Structure, Evolution, and Function in Euascomycetes , 2006 .

[13]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[14]  R. Fischer,et al.  The Aspergillus nidulans Phytochrome FphA Represses Sexual Development in Red Light , 2005, Current Biology.

[15]  M. Berbee,et al.  Lateral transfer of mating system in Stemphylium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Latgé,et al.  Evidence for Sexuality in the Opportunistic Fungal Pathogen Aspergillus fumigatus , 2005, Current Biology.

[17]  Marie-Anne Félix,et al.  High Local Genetic Diversity and Low Outcrossing Rate in Caenorhabditis elegans Natural Populations , 2005, Current Biology.

[18]  N. Keller,et al.  Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. , 2005, Microbiology.

[19]  J. Heitman,et al.  Sexual reproduction between partners of the same mating type in Cryptococcus neoformans , 2005, Nature.

[20]  R. Debuchy,et al.  The Function of the Coding Sequences for the Putative Pheromone Precursors in Podospora anserina Is Restricted to Fertilization , 2005, Eukaryotic Cell.

[21]  K. Borkovich,et al.  The Heterotrimeric G-Protein Subunits GNG-1 and GNB-1 Form a Gβγ Dimer Required for Normal Female Fertility, Asexual Development, and Gα Protein Levels in Neurospora crassa , 2005, Eukaryotic Cell.

[22]  R. Fischer,et al.  The Zn(II)2Cys6 Putative Aspergillus nidulans Transcription Factor Repressor of Sexual Development Inhibits Sexual Development Under Low-Carbon Conditions and in Submersed Culture Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. CAD58393. , 2005, Genetics.

[23]  Richard C. Moore,et al.  Darwinian Selection on a Selfing Locus , 2004, Science.

[24]  S. Agrawal,et al.  Antisense and siRNA as agonists of Toll-like receptors , 2004, Nature Biotechnology.

[25]  M. Nasrallah,et al.  Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Heitman,et al.  Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms , 2004, PLoS biology.

[27]  C. Scazzocchio,et al.  Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. , 2004, Fungal genetics and biology : FG & B.

[28]  P. Dyer,et al.  From genomics to post-genomics in Aspergillus. , 2004, Current opinion in microbiology.

[29]  Kap-Hoon Han,et al.  The gprA and gprB genes encode putative G protein‐coupled receptors required for self‐fertilization in Aspergillus nidulans , 2004, Molecular microbiology.

[30]  Huijun Wei,et al.  Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY) , 2004, Current Genetics.

[31]  G. Butler,et al.  Evolution of the MAT locus and its Ho endonuclease in yeast species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Huijun Wei,et al.  A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. , 2004, Fungal Genetics and Biology.

[33]  R. Contreras,et al.  A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae , 1989, Current Genetics.

[34]  S. Agrawal,et al.  Role of Toll-like receptors in antisense and siRNA [corrected]. , 2004, Nature biotechnology.

[35]  H. Stam,et al.  A novel strategy for the isolation of defined pyrG mutants and the development of a site-specific integration system for Aspergillus awamori , 2004, Current Genetics.

[36]  J. Aguirre,et al.  Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans , 2003, Molecular microbiology.

[37]  B. Turgeon,et al.  Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae , 2003, Molecular microbiology.

[38]  P. Dyer,et al.  Genomics reveals sexual secrets of Aspergillus. , 2003, Microbiology.

[39]  G. Braus,et al.  The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans , 2003, Molecular microbiology.

[40]  R. Hoekstra,et al.  Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. , 2003, Genetics.

[41]  J. Burnett Fungal Populations and Species , 2003 .

[42]  Huijun Wei,et al.  The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans , 2003, Molecular microbiology.

[43]  J. Visser,et al.  Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger. , 2002, Fungal genetics and biology : FG & B.

[44]  Kyung Kim,et al.  The veA gene activates sexual development in Aspergillus nidulans. , 2002, Fungal genetics and biology : FG & B.

[45]  Huijun Wei,et al.  Aspergillus nidulans Catalase-Peroxidase Gene (cpeA) Is Transcriptionally Induced during Sexual Development through the Transcription Factor StuA , 2002, Eukaryotic Cell.

[46]  K. T. Sohn,et al.  Ultrastructural Study on the Cleistothecium Development in Aspergillus nidulans , 2002 .

[47]  S. Pöggeler,et al.  Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora , 2002, Current Genetics.

[48]  G. Braus,et al.  Sexual Development in Ascomycetes Fruit Body Formation of Aspergillus nidulans , 2002 .

[49]  H. Osiewacz Molecular Biology of Fungal Development , 2002 .

[50]  L. Casselton Mate recognition in fungi , 2002, Heredity.

[51]  Huijun Wei,et al.  Aspergillus nidulans alpha-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. , 2001, Fungal genetics and biology : FG & B.

[52]  A. M. Calvo,et al.  Genetic Connection between Fatty Acid Metabolism and Sporulation in Aspergillus nidulans * , 2001, The Journal of Biological Chemistry.

[53]  Kap-Hoon Han,et al.  The nsdD gene encodes a putative GATA‐type transcription factor necessary for sexual development of Aspergillus nidulans , 2001, Molecular microbiology.

[54]  G. Braus,et al.  Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. , 2001, Genetics.

[55]  E. Elion,et al.  Pheromone response, mating and cell biology. , 2000, Current opinion in microbiology.

[56]  J. Heitman,et al.  Signal Transduction Cascades Regulating Fungal Development and Virulence , 2000, Microbiology and Molecular Biology Reviews.

[57]  C. d’Enfert,et al.  A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. , 2000, Nucleic acids research.

[58]  B. Turgeon,et al.  Proposed nomenclature for mating type genes of filamentous ascomycetes. , 2000, Fungal genetics and biology : FG & B.

[59]  H Clevers,et al.  Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. , 2000, The Journal of biological chemistry.

[60]  B. Miller,et al.  Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper‐like proteins conserved from yeast to humans , 2000, Molecular microbiology.

[61]  R. Debuchy,et al.  Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina. , 2000, Genetics.

[62]  P. Dyer,et al.  Reproductive systems: Sex and the single lichen , 2000, Nature.

[63]  B. Miller,et al.  Aspergillus SteA (Sterile12‐like) is a homeodomain‐C2/H2‐Zn+2 finger transcription factor required for sexual reproduction , 2000, Molecular microbiology.

[64]  N. L. Glass,et al.  Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. , 2000, Current opinion in microbiology.

[65]  G. Singh,et al.  Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae , 1999, Current Genetics.

[66]  A. M. Calvo,et al.  Sporogenic Effect of Polyunsaturated Fatty Acids on Development of Aspergillus spp , 1999, Applied and Environmental Microbiology.

[67]  S. Dowell,et al.  A constitutively active G‐protein‐coupled receptor causes mating self‐compatibility in the mushroom Coprinus , 1999, The EMBO journal.

[68]  M. Berbee,et al.  Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Dyer,et al.  Use of Randomly Amplified Polymorphic Dna Markers as a Tool to Study Variation in Lichen-Forming Fungi , 1999, The Lichenologist.

[70]  U. Kües,et al.  Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. , 1999, International review of cytology.

[71]  S. Osmani,et al.  A cyclin‐dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans , 1998, The EMBO journal.

[72]  F. Banuett Signalling in the Yeasts: An Informational Cascade with Links to the Filamentous Fungi , 1998, Microbiology and Molecular Biology Reviews.

[73]  J Griffith,et al.  In vitro reconstruction of the Aspergillus (= Emericella) nidulans genome. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Rose,et al.  KAR5 Encodes a Novel Pheromone-inducible Protein Required for Homotypic Nuclear Fusion , 1997, The Journal of cell biology.

[75]  J. Dutton,et al.  StuAp is a sequence‐specific transcription factor that regulates developmental complexity in Aspergillus nidulans , 1997, The EMBO journal.

[76]  S. Christiansen,et al.  Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG Box. , 1997, Fungal genetics and biology : FG & B.

[77]  Jae-Hyuk Yu,et al.  The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. , 1996, The EMBO journal.

[78]  W. Timberlake,et al.  Loss of meiosis in Aspergillus. , 1996, Molecular biology and evolution.

[79]  B. Miller,et al.  Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. , 1996, Genetics.

[80]  Yaoguang Liu,et al.  Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. , 1995, Genomics.

[81]  P. Punt,et al.  Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. , 1992, Methods in enzymology.

[82]  J. Haber Mating-type gene switching in Saccharomyces cerevisiae. , 1992, Trends in genetics : TIG.

[83]  R. Metzenberg,et al.  Mating type and mating strategies in Neurospora , 1990, BioEssays : news and reviews in molecular, cellular and developmental biology.

[84]  R. Oliver,et al.  Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. , 1987, Gene.

[85]  W. Timberlake,et al.  Direct and indirect gene replacements in Aspergillus nidulans. , 1985, Molecular and cellular biology.

[86]  G. Turner,et al.  Development of a high-frequency transforming vector for Aspergillus nidulans. , 1985, Gene.

[87]  K. D. Macdonald,et al.  The genetics of Aspergillus nidulans. , 1953, Advances in genetics.