Unbiased Estimation with Square Root Convergence for SDE Models

In many settings in which Monte Carlo methods are applied, there may be no known algorithm for exactly generating the random object for which an expectation is to be computed. Frequently, however, one can generate arbitrarily close approximations to the random object. We introduce a simple randomization idea for creating unbiased estimators in such a setting based on a sequence of approximations. Applying this idea to computing expectations of path functionals associated with stochastic differential equations (SDEs), we construct finite variance unbiased estimators with a “square root convergence rate” for a general class of multidimensional SDEs. We then identify the optimal randomization distribution. Numerical experiments with various path functionals of continuous-time processes that often arise in finance illustrate the effectiveness of our new approach.

[1]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[2]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[3]  Ward Whitt,et al.  The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..

[4]  P. Glynn,et al.  Efficient Monte Carlo Simulation of Security Prices , 1995 .

[5]  M. Wiktorsson Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions , 2001 .

[6]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[7]  Nan Chen,et al.  Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations , 2013, Math. Oper. Res..

[8]  Peter W. Glynn,et al.  A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[9]  Ahmed Kebaier,et al.  Central Limit Theorem for the Multilevel Monte Carlo Euler Method and Applications to Asian Options , 2012 .

[10]  William Feller,et al.  A Limit Theorem for Random Variables with Infinite Moments , 1946 .

[11]  Kay Giesecke,et al.  Exact Sampling of Jump-Diffusions , 2013 .

[12]  Don McLeish,et al.  A general method for debiasing a Monte Carlo estimator , 2010, Monte Carlo Methods Appl..

[13]  Ahmed Kebaier,et al.  Central limit theorem for the multilevel Monte Carlo Euler method , 2012, 1501.06365.

[14]  Jessica G. Gaines,et al.  Random Generation of Stochastic Area Integrals , 1994, SIAM J. Appl. Math..

[15]  van der,et al.  Proceedings of the 2012 winter simulation conference , 2001, WSC 2008.

[16]  Christian Kahl,et al.  Fast strong approximation Monte Carlo schemes for stochastic volatility models , 2006 .

[17]  B Lapeyre,et al.  Competitive Monte Carlo methods for the pricing of Asian options , 1999 .

[18]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .

[19]  P. Kloeden,et al.  The approximation of multiple stochastic integrals , 1992 .

[20]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[21]  P. Glynn Randomized Estimators for Time Integrals. , 1983 .

[22]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[23]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[24]  P. Glynn,et al.  The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations , 1992 .

[25]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.