Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence.

We report on a novel design for the fabrication of ultrabright bowtie nanoaperture antenna (BNA) probes to breach the intrinsic trade-off between power transmission and field confinement of circular nanoapertures as in near-field scanning optical microscopy (NSOM) or planar zero mode waveguides. The approach relies on the nanofabrication of BNAs at the apex of tapered optical fibers tuned to diameters close to their cutoff region, resulting in 10(3)× total improvement in throughput over conventional NSOM probes of similar confinement area. By using individual fluorescence molecules as optical nanosensors, we show for the first time nanoimaging of single molecules using BNA probes with an optical confinement of 80 nm, measured the 3D near-field emanating from these nanostructures and determined a ~6-fold enhancement on the single molecule signal. The broadband field enhancement, nanoscale confinement, and background free illumination provided by these nanostructures offer excellent perspectives as ultrabright optical nanosources for a full range of applications, including cellular nanoimaging, spectroscopy, and biosensing.

[1]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[2]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[3]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[4]  Zongfu Yu,et al.  Extraordinary optical absorption through subwavelength slits. , 2009, Optics letters.

[5]  Harold G. Craighead,et al.  Cell investigation of nanostructures: zero-mode waveguides for plasma membrane studies with single molecule resolution , 2007 .

[6]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[7]  G W Burr,et al.  Diabolo nanoantenna for enhancing and confining the magnetic optical field. , 2011, Nano letters.

[8]  Lambertus Hesselink,et al.  Design of a C aperture to achieve λ/10 resolution and resonant transmission , 2004 .

[9]  Q. Gong,et al.  Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. , 2012, ACS nano.

[10]  Jonas Korlach,et al.  Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. , 2012, Nano letters.

[11]  H. Rigneault,et al.  Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection , 2010, International journal of molecular sciences.

[12]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[13]  J. Harris,et al.  High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics. , 2007, Optics letters.

[14]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[15]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[16]  D. Reinhoudt,et al.  Single molecule photobleaching probes the exciton wave function in a multichromophoric system. , 2004, Physical Review Letters.

[17]  Yves F Dufrêne,et al.  Single-molecule imaging of cell surfaces using near-field nanoscopy. , 2012, Accounts of chemical research.

[18]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[19]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[20]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[21]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[22]  Thomas S van Zanten,et al.  Direct mapping of nanoscale compositional connectivity on intact cell membranes , 2010, Proceedings of the National Academy of Sciences.

[23]  Sreemanth M. V. Uppuluri,et al.  Three-dimensional mapping of optical near field of a nanoscale bowtie antenna. , 2010, Optics express.

[24]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[25]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[26]  Thomas S van Zanten,et al.  Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion , 2009, Proceedings of the National Academy of Sciences.

[27]  Carlo Manzo,et al.  Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes. , 2011, Biophysical journal.

[28]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[29]  O. Muskens,et al.  Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. , 2006, cond-mat/0612689.

[30]  Masahiro Tanaka,et al.  Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size , 2004 .

[31]  Tiberiu-Dan Onuta,et al.  Optical field enhancement at cusps between adjacent nanoapertures. , 2007, Nano letters.

[32]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[33]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[34]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[35]  Reuven Gordon,et al.  Extraordinary optical transmission brightens near-field fiber probe. , 2011, Nano letters.

[36]  Xianfan Xu,et al.  Enhanced optical near field from a bowtie aperture , 2006 .

[37]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[38]  G W Burr,et al.  Bowtie nano-aperture as interface between near-fields and a single-mode fiber. , 2010, Optics express.

[39]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[40]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[41]  L. Novotný,et al.  Antennas for light , 2011 .

[42]  Lambertus Hesselink,et al.  C-shaped nanoaperture-enhanced germanium photodetector. , 2006, Optics letters.

[43]  Hervé Rigneault,et al.  Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. , 2005, Biophysical journal.

[44]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[45]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[46]  Thomas S van Zanten,et al.  Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. , 2010, Small.