Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

[1]  R. Hardie,et al.  The Drosophila SK Channel (dSK) Contributes to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network , 2011, The Journal of Neuroscience.

[2]  Roger C. Hardie,et al.  The INAD Scaffold Is a Dynamic, Redox-Regulated Modulator of Signaling in the Drosophila Eye , 2011, Cell.

[3]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[4]  Patrick Degenaar,et al.  A stochastic model of the single photon response in Drosophila photoreceptors. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[5]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[6]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[7]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms , 2009, PloS one.

[8]  Marten Postma,et al.  Ca2+-Dependent Metarhodopsin Inactivation Mediated by Calmodulin and NINAC Myosin III , 2008, Neuron.

[9]  Roger C. Hardie,et al.  Light-Dependent Modulation of Shab Channels via Phosphoinositide Depletion in Drosophila Photoreceptors , 2008, Neuron.

[10]  Alain Pumir,et al.  Systems analysis of the single photon response in invertebrate photoreceptors , 2008, Proceedings of the National Academy of Sciences.

[11]  Mikko Juusola,et al.  Visual Coding in Locust Photoreceptors , 2008, PloS one.

[12]  Rama Ranganathan,et al.  Dynamic Scaffolding in a G Protein-Coupled Signaling System , 2007, Cell.

[13]  S. Frechter,et al.  Translocation of Gqα Mediates Long-Term Adaptation in Drosophila Photoreceptors , 2007, The Journal of Neuroscience.

[14]  Mikko Vähäsöyrinki,et al.  Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels , 2006, The Journal of Neuroscience.

[15]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[16]  B. Burton Adaptation of single photon responses in photoreceptors of the housefly, Musca domestica: A novel spectral analysis , 2006, Vision Research.

[17]  J. H. Hateren,et al.  Phototransduction in primate cones and blowfly photoreceptors: different mechanisms, different algorithms, similar response , 2006, Journal of Comparative Physiology A.

[18]  Yiannis N Kaznessis,et al.  An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. , 2005, The Journal of chemical physics.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Marten Postma,et al.  Mechanisms of Light Adaptation in Drosophila Photoreceptors , 2005, Current Biology.

[21]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[22]  Gonzalo G. de Polavieja,et al.  The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials , 2003, The Journal of general physiology.

[23]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[24]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.

[25]  M. Kosloff,et al.  Regulation of light‐dependent Gqα translocation and morphological changes in fly photoreceptors , 2003, The EMBO journal.

[26]  R. Hardie,et al.  Molecular Basis of Amplification in Drosophila Phototransduction Roles for G Protein, Phospholipase C, and Diacylglycerol Kinase , 2002, Neuron.

[27]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[28]  S. Frechter,et al.  Light-Regulated Subcellular Translocation of Drosophila TRPL Channels Induces Long-Term Adaptation and Modifies the Light-Induced Current , 2002, Neuron.

[29]  H. Resat,et al.  Probability-Weighted Dynamic Monte Carlo Method for Reaction Kinetics Simulations , 2001 .

[30]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[31]  J. H. Hateren,et al.  Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells , 2001, Vision Research.

[32]  Rama Ranganathan,et al.  A Molecular Pathway for Light-Dependent Photoreceptor Apoptosis in Drosophila , 2000, Neuron.

[33]  R. Hardie,et al.  Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ , 2000, The Journal of physiology.

[34]  D. Stavenga,et al.  Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? , 1999, Biophysical journal.

[35]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[36]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[37]  A. Gobert,et al.  The transient receptor potential protein (Trp), a putative store‐operated Ca2+ channel essential for phosphoinositide‐mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. , 1996, The EMBO journal.

[38]  R. Hardie,et al.  Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors , 1996, Visual Neuroscience.

[39]  R. Hardie INDO-1 Measurements of Absolute Resting and Light-Induced Ca2+ Concentration in DrosophilaPhotoreceptors , 1996, The Journal of Neuroscience.

[40]  M Järvilehto,et al.  Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors , 1994, The Journal of general physiology.

[41]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[42]  C. Montell,et al.  Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. , 1993, Science.

[43]  A S French,et al.  The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. , 1993, Biophysical journal.

[44]  E. Suzuki,et al.  Structure of photoreceptive membranes of Drosophila compound eyes as studied by quick-freezing electron microscopy. , 1993, Journal of electron microscopy.

[45]  Mikko Juusola,et al.  Band-pass filtering by voltage-dependent membrane in an insect photoreceptor , 1993, Neuroscience Letters.

[46]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[47]  M. Juusola Linear and non-linear contrast coding in light-adapted blowfly photoreceptors , 1993, Journal of Comparative Physiology A.

[48]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[49]  C. Klee,et al.  Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. , 1992, The Journal of biological chemistry.

[50]  R C Hardie,et al.  Voltage-sensitive potassium channels in Drosophila photoreceptors , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Roger C. Hardie,et al.  Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  S B Laughlin,et al.  Voltage‐activated potassium channels in blowfly photoreceptors and their role in light adaptation. , 1991, The Journal of physiology.

[53]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[54]  Roger C. Hardie,et al.  Novel potassium channels encoded by the Shaker locus in drosophila photoreceptors , 1991, Neuron.

[55]  K. Hamdorf,et al.  Microvillar components of light adaptation in blowflies , 1990, The Journal of general physiology.

[56]  D. Stavenga,et al.  Insect pupil mechanisms , 1990, Journal of Comparative Physiology A.

[57]  Barbara Blakeslee,et al.  The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  B W Knight,et al.  Adapting bump model for ventral photoreceptors of Limulus , 1982, The Journal of general physiology.

[59]  J. Howard,et al.  Response of an insect photoreceptor: a simple log-normal model , 1981, Nature.

[60]  B W Knight,et al.  Dispersion of latencies in photoreceptors of Limulus and the adapting- bump model , 1980, The Journal of general physiology.

[61]  B W Knight,et al.  Adapting-bump model for eccentric cells of Limulus , 1980, The Journal of general physiology.

[62]  Andrew S. French,et al.  Phototransduction in the fly compound eye exhibits temporal resonances and a pure time delay , 1980, Nature.

[63]  G. D. Bernard,et al.  Insect pupil mechanisms , 1979, Journal of Comparative Physiology A.

[64]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[65]  W L Pak,et al.  Light-induced voltage noise in the photoreceptor of Drosophila melanogaster , 1978, The Journal of general physiology.

[66]  B. Minke Drosophila mutant with a transducer defect , 1977, Biophysics of structure and mechanism.

[67]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[68]  F. Dodge,et al.  Voltage Noise in Limulus Visual Cells , 1968, Science.

[69]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[70]  Marten Postma,et al.  1.05 – Phototransduction in Microvillar Photoreceptors of Drosophila and Other Invertebrates , 2008 .

[71]  A. Basbaum The senses : a comprehensive reference , 2008 .

[72]  S. Frechter,et al.  Translocation of Gq alpha mediates long-term adaptation in Drosophila photoreceptors. , 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[74]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[75]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .