The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers

[1]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[2]  R. Scobey,et al.  Detection of image displacement by phasic cells in peripheral visual fields of the monkey , 1976, Vision Research.

[3]  S. McKee,et al.  Spatial configurations for visual hyperacuity , 1977, Vision Research.

[4]  B. B. Lee,et al.  Phase of responses to sinusoidal gratings of simple cells in cat striate cortex. , 1981, Journal of Neurophysiology.

[5]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  G. Westheimer The spatial grain of the perifoveal visual field , 1982, Vision Research.

[7]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[8]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[9]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[10]  S. Klein,et al.  Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[11]  A. Parker,et al.  Capabilities of monkey cortical cells in spatial-resolution tasks. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[12]  M. J. Morgan,et al.  Positional acuity with chromatic stimuli , 1985, Vision Research.

[13]  C. Blakemore,et al.  Organization and post‐natal development of the monkey's lateral geniculate nucleus. , 1986, The Journal of physiology.

[14]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[16]  M. Cynader,et al.  Vernier acuity of neurones in cat visual cortex , 1986, Nature.

[17]  R. Shapley,et al.  Hyperacuity in cat retinal ganglion cells. , 1986, Science.

[18]  B. B. Lee,et al.  An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[20]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  V C Smith,et al.  Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[22]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[23]  Randolph Blake,et al.  Limits of binocular fusion in the short wave sensitive (“blue”) cones , 1988, Vision Research.

[24]  B. B. Lee,et al.  Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. , 1989, The Journal of physiology.

[25]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[26]  G Westheimer,et al.  Contrast and duration of exposure differentially affect vernier and stereoscopic acuity , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  B. Boycott,et al.  Retinal ganglion cell density and cortical magnification factor in the primate , 1990, Vision Research.

[28]  B. B. Lee,et al.  The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. , 1990, The Journal of physiology.

[29]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[30]  Bart Farell,et al.  Vernier acuity: Effects of chromatic content, blur and contrast , 1991, Vision Research.

[31]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[32]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[33]  Responses of macaque ganglion-cells to counterphase modulation of a bipartite field. , 1992 .

[34]  V. Perry,et al.  Visual effects of damage to P ganglion cells in macaques , 1992, Visual Neuroscience.

[35]  L. Kiorpes Development of vernier acuity and grating acuity in normally reared monkeys , 1992, Visual Neuroscience.

[36]  B. B. Lee,et al.  Responses of macaque ganglion cells to movement of chromatic borders. , 1992, Journal of Physiology.

[37]  D. Levi,et al.  Orientation, masking, and vernier acuity for line targets , 1993, Vision Research.

[38]  B. Boycott,et al.  Parasol (Pα) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors , 1993, Vision Research.

[39]  Dennis M. Levi,et al.  Visibility, timing and vernier acuity , 1993, Vision Research.

[40]  Barry B. Lee,et al.  Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Joel Pokorny,et al.  Responses to pulses and sinusoids in macaque ganglion cells , 1994, Vision Research.

[42]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[43]  Extracting stimulus position from ganglion-cell responses in vernier performance , 1994 .

[44]  B. B. Lee,et al.  Steady discharges of macaque retinal ganglion cells , 1991, Visual Neuroscience.

[45]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.