Structural supercapacitor electrode for energy storage by electroless deposition of MnO2 on carbon nanotube mats

[1]  Dipan Kundu,et al.  3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity , 2022, Advanced materials.

[2]  Hao Li,et al.  Structural Composite Energy Storage Devices-a Review , 2021, Materials Today Energy.

[3]  A. Bismarck,et al.  Towards separator-free structural composite supercapacitors , 2021, Composites Science and Technology.

[4]  N. Fleck,et al.  The mechanical and electrochemical properties of polyaniline-coated carbon nanotube mat , 2021, 2106.09097.

[5]  J. Fransaer,et al.  Carbon Nanotube Fibers Decorated with MnO2 for Wire-Shaped Supercapacitor , 2021, Molecules.

[6]  Chun H. Wang,et al.  Creating ionic pathways in solid-state polymer electrolyte by using PVA-coated carbon nanofibers , 2021 .

[7]  K. Cen,et al.  More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel , 2021 .

[8]  Biplab K. Deka,et al.  Multifunctional Composite as a Structural Supercapacitor and Self-sensing Sensor using NiCo2O4 Nanowires and Ionic Liquid , 2021 .

[9]  Yang Zhou,et al.  Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors , 2021 .

[10]  Jianbo Zhang,et al.  Editors’ Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications , 2020 .

[11]  Sangtae Kim,et al.  The Rate-Dependence of Supercapacitor Performance: Quantitative Evaluation Using Peukert’s Constant , 2020, Journal of The Electrochemical Society.

[12]  Dingyu Yang,et al.  Effects of electrodeposition time on a manganese dioxide supercapacitor , 2020, RSC advances.

[13]  Kamran Ghorbani,et al.  Structural composite supercapacitor using carbon nanotube mat electrodes with interspersed metallic iron nanoparticles , 2020 .

[14]  G. Lindbergh,et al.  Structural battery composites: a review , 2019, Functional Composites and Structures.

[15]  Y. Meng,et al.  A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems , 2019, International Materials Reviews.

[16]  Abolhassan Noori,et al.  Towards establishing standard performance metrics for batteries, supercapacitors and beyond. , 2019, Chemical Society reviews.

[17]  N. Bensalah,et al.  Sputtered manganese oxide thin film on carbon nanotubes sheet as a flexible and binder‐free electrode for supercapacitors , 2019, International Journal of Energy Research.

[18]  K. Cen,et al.  Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance , 2019, Energy Storage Materials.

[19]  Yu Song,et al.  High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors. , 2018, ACS nano.

[20]  Yuxin Zhang,et al.  Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor , 2018 .

[21]  J. Lee,et al.  A critical review on multifunctional composites as structural capacitors for energy storage , 2018 .

[22]  Peter Wierach,et al.  Multifunctional Composites for Future Energy Storage in Aerospace Structures , 2018 .

[23]  Biplab K. Deka,et al.  Electrochemical performance evaluation of tin oxide nanorod‐embedded woven carbon fiber composite supercapacitor , 2018 .

[24]  R. Marcilla,et al.  Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors , 2017, 1902.04133.

[25]  Alain Mauger,et al.  Nanostructured MnO2 as Electrode Materials for Energy Storage , 2017, Nanomaterials.

[26]  Biplab K. Deka,et al.  Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes , 2017 .

[27]  J. Boyd,et al.  Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power. , 2017, ACS nano.

[28]  M. Montemor,et al.  Electrodeposition: a versatile, efficient, binder-free and room temperature one-step process to produce MnO2 electrochemical capacitor electrodes , 2017 .

[29]  J. Llorca,et al.  Structural composites for multifunctional applications: Current challenges and future trends , 2017, 1703.09917.

[30]  Sangtae Kim,et al.  Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors. , 2016, The journal of physical chemistry letters.

[31]  H. Park,et al.  Enhanced mechanical and thermal properties of hybrid SnO2–woven carbon fiber composites using the facile controlled growth method , 2016 .

[32]  F. Walsh,et al.  Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors , 2015 .

[33]  Ning Pan,et al.  Supercapacitors Performance Evaluation , 2015 .

[34]  Edwin B. Gienger,et al.  Performance metrics for structural composites with electrochemical multifunctionality , 2015 .

[35]  G. Wallace,et al.  Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor , 2014 .

[36]  P. He,et al.  Novel FeMoO4/graphene composites based electrode materials for supercapacitors , 2014 .

[37]  Shaikh Nayeem Faisal,et al.  Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode , 2014 .

[38]  Per Jacobsson,et al.  Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems , 2013 .

[39]  A. Kucernak,et al.  Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. , 2013, ACS applied materials & interfaces.

[40]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[41]  A. Bismarck,et al.  Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. , 2013, Journal of colloid and interface science.

[42]  A. Kucernak,et al.  Structural composite supercapacitors , 2013 .

[43]  M. Chan-Park,et al.  High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors , 2013 .

[44]  Niels P Zussblatt,et al.  Design of Flexible Supercapacitors Using Metal Oxide-Decorated Carbon Nanotube Sheet , 2012 .

[45]  H. Teng,et al.  Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes , 2012 .

[46]  Songtao Lu,et al.  Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. , 2012, Nano letters.

[47]  B. Wei,et al.  Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films , 2012 .

[48]  Ben Wang,et al.  High Mechanical Performance Composite Conductor: Multi‐Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites , 2009 .

[49]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[50]  D. Bélanger,et al.  Direct Redox Deposition of Manganese Oxide on Multiscaled Carbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor , 2009 .

[51]  James F. Snyder,et al.  Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications , 2009 .

[52]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[53]  T. Kubo,et al.  Well-Controlled 3D Skeletal Epoxy-Based Monoliths Obtained by Polymerization Induced Phase Separation , 2008 .

[54]  Liping Zhang,et al.  Facile Conversion of the Surface Layers of Graphite to Capacitive Manganese Oxide Coatings , 2008 .

[55]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[56]  J. Long,et al.  Redox Deposition of Nanoscale MnO2 on Ultraporous Carbon Nanoarchitectures: Correlation of MnO2 Deposition Time and Electrochemical Performance , 2007 .

[57]  Wuzong Zhou,et al.  Nanoscale microelectrochemical cells on carbon nanotubes. , 2007, Small.

[58]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[59]  C. Julien,et al.  Raman spectra of birnessite manganese dioxides , 2003 .

[60]  R. Ghez On the Mott‐Cabrera oxidation rate equation and the inverse‐logarithmic law , 1973 .

[61]  Yong Yang,et al.  Preparation and Properties of Manganese Oxide/Carbon Composites by Reduction of Potassium Permanganate with Acetylene Black , 2007 .

[62]  Kwang‐Bum Kim,et al.  Spontaneously Deposited Manganese Oxide on Acetylene Black in an Aqueous Potassium Permanganate Solution , 2006 .

[63]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .