Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis

ABSTRACT Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.

[1]  J. Heitman,et al.  On the Roles of Calcineurin in Fungal Growth and Pathogenesis , 2010 .

[2]  C. Munro,et al.  Fungal echinocandin resistance , 2010, F1000 biology reports.

[3]  A. Zaas,et al.  PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90 , 2010, PLoS pathogens.

[4]  G. Moran,et al.  Differential Filamentation of Candida albicans and Candida dubliniensis Is Governed by Nutrient Regulation of UME6 Expression , 2010, Eukaryotic Cell.

[5]  D. Andes,et al.  Development and Validation of an In Vivo Candida albicans Biofilm Denture Model , 2010, Infection and Immunity.

[6]  M. Davarpanah,et al.  Distributions and antifungal susceptibility of Candida species from mucosal sites in HIV positive patients. , 2010, Archives of Iranian medicine.

[7]  Victoria Chen,et al.  Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity , 2010, Nature Genetics.

[8]  M. Greenblatt,et al.  Calcineurin regulates innate antifungal immunity in neutrophils , 2010, The Journal of experimental medicine.

[9]  S. Redding,et al.  Oropharyngeal candidiasis in the era of antiretroviral therapy. , 2010, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[10]  J. Dunlap,et al.  Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans , 2010, Molecular microbiology.

[11]  D. Kontoyiannis,et al.  Caspofungin-non-susceptible Candida isolates in cancer patients. , 2010, The Journal of antimicrobial chemotherapy.

[12]  K. Yanagihara,et al.  Roles of Calcineurin and Crz1 in Antifungal Susceptibility and Virulence of Candida glabrata , 2010, Antimicrobial Agents and Chemotherapy.

[13]  G. Moran,et al.  Differential filamentation of Candida albicans and C . dubliniensis is 8 ! governed by nutrient regulation of UME 6 expression 9 ! , 2010 .

[14]  K. Hokamp,et al.  Comparative Transcript Profiling of Candida albicans and Candida dubliniensis Identifies SFL2, a C. albicans Gene Required for Virulence in a Reconstituted Epithelial Infection Model , 2009, Eukaryotic Cell.

[15]  S. Chunchanur,et al.  Detection and antifungal susceptibility testing of oral Candida dubliniensis from human immunodeficiency virus-infected patients. , 2009, Indian journal of pathology & microbiology.

[16]  Marie-Adèle Rajandream,et al.  Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. , 2009, Genome research.

[17]  D. Andrews,et al.  Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. , 2009, Molecular plant-microbe interactions : MPMI.

[18]  C. d’Enfert,et al.  Genetic Differences between Avian and Human Isolates of Candida dubliniensis , 2009, Emerging infectious diseases.

[19]  N. Gow,et al.  Mechanisms of hypha orientation of fungi , 2009, Current opinion in microbiology.

[20]  V. Lara,et al.  Isolation of Candida dubliniensis from denture wearers. , 2009, Journal of medical microbiology.

[21]  Aimee K. Zaas,et al.  Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida albicans via Calcineurin , 2009, PLoS pathogens.

[22]  D. MacCallum,et al.  Genome‐wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress , 2009, Molecular microbiology.

[23]  Jongsun Park,et al.  MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. , 2009, Fungal genetics and biology : FG & B.

[24]  D. Goldblum,et al.  Donor-to-Host Transmission of Candida glabrata to Both Recipients of Corneal Transplants From the Same Donor , 2009, Cornea.

[25]  G. Quindós,et al.  Isolation of Candida dubliniensis in denture stomatitis. , 2009, Archives of oral biology.

[26]  N. Gow,et al.  Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae , 2009, Molecular microbiology.

[27]  Y. Tsai,et al.  Unilateral Candida parapsilosis Interface Keratitis After Laser In Situ Keratomileusis-Case Report and Review of the Literature , 2009, Cornea.

[28]  Yong-Hwan Lee,et al.  Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus magnaporthe oryzae. , 2009, Journal of microbiology and biotechnology.

[29]  J. Perfect,et al.  Differential Effects of Inhibiting Chitin and 1,3-β-d-Glucan Synthesis in Ras and Calcineurin Mutants of Aspergillus fumigatus , 2008, Antimicrobial Agents and Chemotherapy.

[30]  J. Bagg,et al.  Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. , 2008, Oral microbiology and immunology.

[31]  J. Heitman,et al.  Calcineurin Target CrzA Regulates Conidial Germination, Hyphal Growth, and Pathogenesis of Aspergillus fumigatus , 2008, Eukaryotic Cell.

[32]  N. Gow,et al.  Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins , 2008, PLoS pathogens.

[33]  N. Gow,et al.  An Internal Polarity Landmark Is Important for Externally Induced Hyphal Behaviors in Candida albicans , 2008, Eukaryotic Cell.

[34]  T. Reynolds,et al.  Candida albicans Uses Multiple Mechanisms To Acquire the Essential Metabolite Inositol during Infection , 2008, Infection and Immunity.

[35]  J. Heitman,et al.  Synergistic Effect of Calcineurin Inhibitors and Fluconazole against Candida albicans Biofilms , 2008, Antimicrobial Agents and Chemotherapy.

[36]  J. Heitman,et al.  Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis , 2007, Antimicrobial Agents and Chemotherapy.

[37]  Jamal Stie,et al.  Calcineurin Regulation in Fungi and Beyond , 2007, Eukaryotic Cell.

[38]  G. Cole,et al.  Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. , 2007, Fungal genetics and biology : FG & B.

[39]  J. Heitman,et al.  Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections , 2007, Nature Reviews Microbiology.

[40]  J. Heitman,et al.  Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus , 2007, Antimicrobial Agents and Chemotherapy.

[41]  M. Nunn,et al.  Environmental Source of Candida dubliniensis , 2007, Emerging infectious diseases.

[42]  N. Gow,et al.  Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism , 2007, Current Biology.

[43]  J. Heitman,et al.  Calcineurin Promotes Infection of the Cornea by Candida albicans and Can Be Targeted To Enhance Fluconazole Therapy , 2006, Antimicrobial Agents and Chemotherapy.

[44]  Stefan Bentink,et al.  Role of Calcineurin in Stress Resistance, Morphogenesis, and Virulence of a Candida albicans Wild-Type Strain , 2006, Infection and Immunity.

[45]  William R. Kirkpatrick,et al.  Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus , 2006, Eukaryotic Cell.

[46]  C. Nombela,et al.  The MAP kinase signal transduction network in Candida albicans. , 2006, Microbiology.

[47]  D. Sanglard,et al.  CRZ1, a target of the calcineurin pathway in Candida albicans , 2006, Molecular microbiology.

[48]  J. Heitman,et al.  Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. , 2006, Microbiology.

[49]  G. Moran,et al.  Candida dubliniensis: ten years on. , 2005, FEMS microbiology letters.

[50]  G. Forrest,et al.  Prevalence of Candida dubliniensis fungemia at a large teaching hospital. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[51]  Joseph Heitman,et al.  Calcineurin Is Required for Candida albicans To Survive Calcium Stress in Serum , 2005, Infection and Immunity.

[52]  I. F. Larrinoa,et al.  Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor , 2005, Current Genetics.

[53]  J. Heitman,et al.  Galleria mellonella as a Model System To Study Cryptococcus neoformans Pathogenesis , 2005, Infection and Immunity.

[54]  S. Filler,et al.  Role of the fungal Ras‐protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis , 2004, Cellular microbiology.

[55]  J. Heitman,et al.  The Calcineurin Target, Crz1, Functions in Azole Tolerance but Is Not Required for Virulence of Candida albicans , 2004, Infection and Immunity.

[56]  R. Kolter,et al.  The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. , 2004, Gene.

[57]  D. Andes,et al.  Development and Characterization of an In Vivo Central Venous Catheter Candida albicans Biofilm Model , 2004, Infection and Immunity.

[58]  Joseph Heitman,et al.  Calcineurin: a central controller of signalling in eukaryotes , 2004, EMBO reports.

[59]  G. Moran,et al.  Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. , 2004, FEMS yeast research.

[60]  A. Gillum,et al.  Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations , 2004, Molecular and General Genetics MGG.

[61]  Teresa Bader,et al.  Calcineurin Is Essential for Virulence in Candida albicans , 2003, Infection and Immunity.

[62]  Joseph Heitman,et al.  Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence , 2003, Eukaryotic Cell.

[63]  N. Gow,et al.  Antifungal agents: mechanisms of action. , 2003, Trends in microbiology.

[64]  Dominique Sanglard,et al.  Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence , 2003, Molecular microbiology.

[65]  J. Heitman,et al.  Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei , 2003, Antimicrobial Agents and Chemotherapy.

[66]  K. Wilhelmus,et al.  Experimental keratomycosis in a mouse model. , 2003, Investigative ophthalmology & visual science.

[67]  B. Wickes,et al.  Molecular Mechanisms of Fluconazole Resistance in Candida dubliniensis Isolates from Human Immunodeficiency Virus-Infected Patients with Oropharyngeal Candidiasis , 2002, Antimicrobial Agents and Chemotherapy.

[68]  Joseph Heitman,et al.  Calcineurin is essential for survival during membrane stress in Candida albicans , 2002, The EMBO journal.

[69]  M. Miyaji,et al.  Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans. , 2002, Medical mycology.

[70]  R. Calderone,et al.  Virulence factors of Candida albicans. , 2001, Trends in microbiology.

[71]  Joseph Heitman,et al.  Synergistic Antifungal Activities of Bafilomycin A1, Fluconazole, and the Pneumocandin MK-0991/Caspofungin Acetate (L-743,873) with Calcineurin Inhibitors FK506 and L-685,818 against Cryptococcus neoformans , 2000, Antimicrobial Agents and Chemotherapy.

[72]  A. Mitchell,et al.  RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans , 2000, Molecular and Cellular Biology.

[73]  L. Harrison,et al.  Candida dubliniensis fungemia: the first four cases in North America. , 2000, Emerging infectious diseases.

[74]  G. Gilfillan,et al.  Candida dubliniensis: phylogeny and putative virulence factors. , 1998, Microbiology.

[75]  J. Davies,et al.  Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. , 1998, Microbiology.

[76]  M. Cyert,et al.  Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. , 1997, Genes & development.

[77]  G. Fink,et al.  Nonfilamentous C. albicans Mutants Are Avirulent , 1997, Cell.

[78]  A. Johnson,et al.  Control of filament formation in Candida albicans by the transcriptional repressor TUP1. , 1997, Science.

[79]  J. Heitman,et al.  Calcineurin is required for virulence of Cryptococcus neoformans , 1997, The EMBO journal.

[80]  M. Henman,et al.  Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro , 1997, Antimicrobial agents and chemotherapy.

[81]  R. Hemady Microbial keratitis in patients infected with the human immunodeficiency virus. , 1995, Ophthalmology.

[82]  D. Coleman,et al.  Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. , 1995, Microbiology.

[83]  T. Toda,et al.  A calcineurin-like gene ppb1+ in fission yeast: mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning. , 1994, Journal of cell science.

[84]  J. Perfect,et al.  Karyotyping of Cryptococcus neoformans as an epidemiological tool , 1993, Journal of clinical microbiology.

[85]  D. Irwin,et al.  Isogenic strain construction and gene mapping in Candida albicans. , 1993, Genetics.

[86]  R. Hemady,et al.  Recurrent corneal infections in a patient with the acquired immunodeficiency syndrome. , 1993, Cornea.

[87]  S. Jagannath,et al.  The Use of Placebos in Controlled Trials , 1992, Annals of Internal Medicine.

[88]  E. Allen,et al.  Uniformity among races of Uromyces appendiculatus in response to topographic signaling for appressorium formation , 1991 .

[89]  N. Gow,et al.  Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. , 1990, Journal of general microbiology.

[90]  Á. Durán,et al.  Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization , 1985, Journal of bacteriology.

[91]  M. Gonneau,et al.  Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases , 1984, Journal of bacteriology.

[92]  R. Sentandreu,et al.  Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. , 1983, Journal of general microbiology.

[93]  B. I. Zaslavskii,et al.  [Effect of sodium dodecyl sulfate on biological membranes]. , 1979, Biofizika.