S-duality in Vafa-Witten theory for non-simply laced gauge groups

Vafa-Witten theory is a twisted N = 4 supersymmetric gauge theory whose partition functions are the generating functions of the Euler number of instanton moduli spaces. In this paper, we recall quantum gauge theory with discrete electric and magnetic fluxes and review the main results of Vafa-Witten theory when the gauge group is simply laced. Based on the transformations of theta functions and their appearance in the blow-up formulae, we propose explicit transformations of the partition functions under the Hecke group when the gauge group is non-simply laced. We provide various evidences and consistency checks.

[1]  Siye Wu Miniscule representations, Gauss sum and modular invariance , 2008, 0802.2038.

[2]  E. Witten,et al.  Geometric Endoscopy and Mirror Symmetry , 2007, 0710.5939.

[3]  E. Witten Gauge theory and wild ramification , 2007, 0710.0631.

[4]  E. Witten,et al.  Gauge Theory, Ramification, And The Geometric Langlands Program , 2006, hep-th/0612073.

[5]  E. Witten,et al.  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[6]  A. Kapustin,et al.  On S-duality for Non-Simply-Laced Gauge Groups , 2006, hep-th/0603048.

[7]  M. Sasaki,et al.  An Approach to N = 4 ADE gauge Theory on K3 , 2002 .

[8]  Toru Sasaki,et al.  An Approach to Script N = 4 ADE Gauge Theory onK3 , 2002, Journal of High Energy Physics.

[9]  徹 佐々木 N=4 Supersymmetric Yang-Mills Theory on Orbifold-T^4/Z_2 , 2002 .

[10]  G. Bonelli The geometry of M5-branes and TQFTs , 2001 .

[11]  Toru Sasaki,et al.  N = 4 supersymmetric Yang-Mills theory on orbifold-T 4 =Z2: higher rank case , 2001, hep-th/0109159.

[12]  Toru Sasaki,et al.  N = 4 supersymmetric Yang-Mills theory on orbifold-T4/Z2 higher rank case, 17 pages , 2001 .

[13]  M. Kapranov The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.

[14]  C. Lozano,et al.  The Vafa-Witten Theory for Gauge Group SU(N) , 1999, hep-th/9903172.

[15]  L. Göttsche Theta Functions and Hodge Numbers of Moduli Spaces of Sheaves on Rational Surfaces , 1998, math/9808007.

[16]  Wei-Ping Li,et al.  On blowup formulae for the S-duality conjecture of Vafa and Witten , 1998, math/9805054.

[17]  K. Yoshioka Euler Characteristics of SU(2) Instanton Moduli Spaces on Rational Elliptic Surfaces , 1998, math/9805003.

[18]  C. Vafa,et al.  E strings and N=4 topological Yang-Mills theories , 1998, hep-th/9802168.

[19]  N. Dorey,et al.  S-duality in N = 4 supersymmetric gauge theories with arbitrary gauge group , 1996, hep-th/9605069.

[20]  N. Marcus The Other topological twisting of N=4 Yang-Mills , 1995, hep-th/9506002.

[21]  L. Girardello,et al.  S-duality in N = 4 Yang-Mills theories with general gauge groups , 1995, hep-th/9507064.

[22]  E. Witten Monopoles and four-manifolds , 1994, hep-th/9411102.

[23]  E. Witten,et al.  A Strong coupling test of S duality , 1994, hep-th/9408074.

[24]  E. Witten,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994, hep-th/9407087.

[25]  L. Girardello,et al.  Non-Abelian strong-weak coupling duality in (string-derived) N=4 supersymmetric Yang-Mills theories☆ , 1994, hep-th/9406128.

[26]  吉岡 康太 The Betti numbers of the moduli space of stable sheaves of rank 2 on ℙ[2] , 1994 .

[27]  Weiping Zhang Circle bundles, adiabatic limits of $\eta$-invariants and Rokhlin congruences , 1994 .

[28]  K. Yoshioka The Betti numbers of the moduli space of stable sheaves of rank2 on P2. , 1994 .

[29]  A. Klyachko Moduli of vector bundles and numbers of classes , 1991 .

[30]  L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface , 1990 .

[31]  J. Yamron Topological actions from twisted supersymmetric theories , 1988 .

[32]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[33]  E. Witten,et al.  String Theory on Group Manifolds , 1986 .

[34]  V. Kac,et al.  Infinite-dimensional Lie algebras, theta functions and modular forms , 1984 .

[35]  C. Taubes Self-dual connections on 4-manifolds with indefinite intersection matrix , 1984 .

[36]  C. Taubes Self-dual Yang-Mills connections on non-self-dual 4-manifolds , 1982 .

[37]  H. Osborn Topological Charges for N=4 Supersymmetric Gauge Theories and Monopoles of Spin 1 , 1979 .

[38]  G. Hooft A property of electric and magnetic flux in non-Abelian gauge theories , 1979 .

[39]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  E. Witten,et al.  Supersymmetry algebras that include topological charges , 1978 .

[41]  Gerard 't Hooft,et al.  On the Phase Transition Towards Permanent Quark Confinement , 1978 .

[42]  D. Olive,et al.  Magnetic monopoles as gauge particles , 1977 .

[43]  J. Nuyts,et al.  Gauge theories and magnetic charge , 1977 .

[44]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[45]  V. Rokhlin Proof of Gudkov's hypothesis , 1972 .

[46]  Gordon C. Brown A remark on semi-simple Lie algebras , 1964 .

[47]  F. Blij An invariant of quadratic forms mod 8 , 1959 .