Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics

[1]  B. Kandola,et al.  Intumescent fire‐retardant coatings for plastics based on poly(vinylphosphonic acid): Improving water resistance with comonomers , 2020, Journal of Applied Polymer Science.

[2]  R. Sonnier,et al.  Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes , 2018 .

[3]  Nicolas Hernandez,et al.  Influence of grammage on heat release rate of polypropylene fabrics , 2018 .

[4]  R. Sonnier,et al.  Radiation-grafting of flame retardants on flax fabrics – A comparison between different flame retardant structures , 2017 .

[5]  G. Malucelli,et al.  Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric , 2017, Cellulose.

[6]  R. Sonnier,et al.  Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds , 2015 .

[7]  Yan Li,et al.  The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites , 2015 .

[8]  L. Ferry,et al.  Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate , 2015 .

[9]  Maya J John,et al.  Review on flammability of biofibres and biocomposites. , 2014, Carbohydrate polymers.

[10]  R. Sonnier,et al.  Synthesis of new flame-retardants by radical chain transfer copolymerization of glycidyl methacrylate and dimethoxy-phosphorylmethyl methacrylate , 2014 .

[11]  R. Sonnier,et al.  CHAPTER 12:Flame Retardancy of Phosphorus-Containing Polymers , 2014 .

[12]  G. David,et al.  CHAPTER 3:Phosphorus-Containing Vinyl or Allyl Monomers , 2014 .

[13]  L. Ferry,et al.  Use of Py-GC/MS and PCFC to characterize the surface modification of flax fibres , 2014 .

[14]  M. P. Gashti,et al.  UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating , 2013 .

[15]  A. Mas,et al.  Thermal degradation and fire behavior of thermoset resins modified with phosphorus containing styrene , 2012 .

[16]  J. Alongi,et al.  Optimization of the procedure to burn textile fabrics by cone calorimeter: part II. Results on nanoparticle‐finished polyester , 2012 .

[17]  Sabyasachi Gaan,et al.  Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds , 2012 .

[18]  J. Alongi,et al.  Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester , 2011 .

[19]  J. Lim,et al.  Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites , 2011 .

[20]  K. Opwis,et al.  Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid , 2011 .

[21]  Jenny Alongi,et al.  Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability , 2011 .

[22]  H. Schmid,et al.  Flame retardant functional textiles , 2011 .

[23]  Bernhard Schartel,et al.  Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development? , 2010, Materials.

[24]  R. Anandjiwala,et al.  Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: A Review , 2010 .

[25]  R. Kozłowski,et al.  Natural Fibers Production, Processing, and Application: Inventory and Future Prospects , 2010 .

[26]  A. Horrocks An Introduction to the Burning Behaviour of Cellulosic Fibres , 2008 .

[27]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[28]  M. Tsafack,et al.  Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: Flame and waterproof cotton textiles , 2007 .

[29]  Gang Sun,et al.  Effect of phosphorus and nitrogen on flame retardant cellulose : A study of phosphorus compounds , 2007 .

[30]  L. Broadbelt,et al.  Estimation of free radical polymerization rate coefficients using computational chemistry , 2006 .

[31]  D. Bishop,et al.  Physical and chemical properties of flax fibres from stand-retted crops desiccated at different stages of maturity , 2005 .

[32]  J. Kenny,et al.  A Review on Natural Fibre-Based Composites—Part II , 2005 .

[33]  J. Kenny,et al.  A Review on Natural Fibre-Based Composites-Part I , 2004 .

[34]  I. Hamerton,et al.  RECENT DEVELOPMENTS IN THE CHEMISTRY OF HALOGEN-FREE FLAME RETARDANT POLYMERS , 2002 .

[35]  S. Zhang,et al.  Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (proban CC®) flame retardant , 2002 .

[36]  T. R. Hull,et al.  Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds , 2002 .

[37]  A. Horrocks Enhancing polymer char formation by reaction with phosphorylated polyols. 1. Cellulose , 2001 .

[38]  P. Joseph,et al.  Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies , 2000 .

[39]  D. Thwaites CHAPTER 12 , 1999 .

[40]  M. Nelson Ignition mechanisms of thermally thin thermoplastics in the cone calorimeter , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Esko Mikkola,et al.  On the Thermal Ignition of Combustible Materials , 1989 .

[42]  Vytenis Babrauskas,et al.  Ignitability measurements with the cone calorimeter , 1986 .

[43]  Clayton Huggett,et al.  Estimation of rate of heat release by means of oxygen consumption measurements , 1980 .

[44]  J. C. Arthur,et al.  Flame resistant cotton fabrics prepared by radiation‐initiated polymerization with vinyl phosphonate oligomer and N‐methylolacrylamide , 1979 .