Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism

[1]  F. Altermatt,et al.  The European Green Deal misses Europe’s subterranean biodiversity hotspots , 2022, Nature Ecology & Evolution.

[2]  L. Yao,et al.  DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea) , 2022, Molecular ecology resources.

[3]  E. Haring,et al.  Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region , 2021, Journal of Zoological Systematics and Evolutionary Research.

[4]  C. Muster,et al.  The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions , 2021, Ecology and evolution.

[5]  G. Gardini The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. , 2021, Zootaxa.

[6]  O. Seehausen,et al.  A subterranean adaptive radiation of amphipods in Europe , 2021, Nature Communications.

[7]  N. Vesović,et al.  Roncus sutikvae sp.n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia) , 2021, Arthropoda Selecta.

[8]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[9]  S. Ćurčić,et al.  Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively , 2021 .

[10]  Ligia R. Benavides,et al.  Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions , 2020, bioRxiv.

[11]  S. Brouillet,et al.  ASAP: assemble species by automatic partitioning , 2020, Molecular ecology resources.

[12]  C. Fišer,et al.  How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles , 2020, Journal of Biogeography.

[13]  Z. Šatović,et al.  Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers , 2020, Plant Systematics and Evolution.

[14]  M. Lukić,et al.  Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae) , 2020, Zoologica Scripta.

[15]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[16]  S. Taiti,et al.  Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae) , 2019, Zoological Journal of the Linnean Society.

[17]  M. Zagmajster,et al.  Contribution of rare and common species to subterranean species richness patterns , 2019, Ecology and evolution.

[18]  M. Harvey,et al.  Climate variability impacts on diversification processes in a biodiversity hotspot: a phylogeography of ancient pseudoscorpions in south-western Australia , 2019, Zoological Journal of the Linnean Society.

[19]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[20]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[21]  P. Trontelj Adaptation and natural selection in caves , 2019, Encyclopedia of Caves.

[22]  Jean‐François Flot,et al.  The hitchhiker's guide to single‐locus species delimitation , 2018, Molecular ecology resources.

[23]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[24]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[25]  J. Velić,et al.  An geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia , 2017 .

[26]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[27]  C. Fišer,et al.  The importance of naming cryptic species and the conservation of endemic subterranean amphipods , 2017, Scientific Reports.

[28]  C. Fišer,et al.  The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda) , 2017 .

[29]  J. Zaragoza Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). , 2017, Zootaxa.

[30]  J. Vörös,et al.  Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA , 2017, PloS one.

[31]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[32]  Roderic D M Page,et al.  DNA barcoding and taxonomy: dark taxa and dark texts , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  V. Baranov,et al.  Blind Flight? A New Troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama – Trojama Cave in Croatia , 2016, PloS one.

[34]  Jeremy R. deWaard,et al.  Untangling taxonomy: a DNA barcode reference library for Canadian spiders , 2016, Molecular ecology resources.

[35]  P. Trontelj,et al.  Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro , 2016, Arthropod Systematics & Phylogeny.

[36]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[37]  R. Jovani,et al.  DNA barcoding and minibarcoding as a powerful tool for feather mite studies , 2015, Molecular Ecology Resources.

[38]  P. Hebert,et al.  Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida , 2015, PloS one.

[39]  D. Antić,et al.  Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. , 2015, Zootaxa.

[40]  G. Gardini The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. , 2014, Zootaxa.

[41]  Paul D N Hebert,et al.  DNA barcode-based delineation of putative species: efficient start for taxonomic workflows , 2014, Molecular ecology resources.

[42]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[43]  S. Ćurčić,et al.  ON TWO NEW CAVE SPECIES OF PSEUDOSCORPIONS (NEOBISIIDAE, PSEUDOSCORPIONES) FROM HERZEGOVINA AND DALMATIA , 2014 .

[44]  Jiajie Zhang,et al.  A general species delimitation method with applications to phylogenetic placements , 2013, Bioinform..

[45]  Sujeevan Ratnasingham,et al.  A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System , 2013, PloS one.

[46]  G. Gardini A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. , 2013, Zootaxa.

[47]  B. Morton,et al.  Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst , 2013, Frontiers in Zoology.

[48]  A. Casale,et al.  Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini) , 2012 .

[49]  S. Boyer,et al.  Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding , 2012, Molecular ecology resources.

[50]  A. Lambert,et al.  ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.

[51]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[52]  Charles F. F. Karney Algorithms for geodesics , 2011, Journal of Geodesy.

[53]  B. Šket Diversity Patterns in the Dinaric Karst , 2012 .

[54]  B. Ćurčić,et al.  Archaeoroncus, a New Genus of Pseudoscorpions from Croatia (Pseudoscorpiones: Neobisiidae), with Descriptions of Two New Species , 2012 .

[55]  P. Fedor,et al.  An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia , 2011 .

[56]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[57]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[58]  F. Médail,et al.  Glacial refugia influence plant diversity patterns in the Mediterranean Basin , 2009 .

[59]  D. Culver,et al.  Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions , 2009 .

[60]  M. Vences,et al.  Molecular Identification of Birds: Performance of Distance-Based DNA Barcoding in Three Genes to Delimit Parapatric Species , 2009, PloS one.

[61]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[62]  F. Šťáhlavský,et al.  A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology , 2008 .

[63]  Palle Villesen,et al.  FaBox: an online toolbox for fasta sequences , 2007 .

[64]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[65]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[66]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[67]  Gaurav Vaidya,et al.  DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.

[68]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[69]  C. Cicero,et al.  Open access, freely available online Correspondence DNA Barcoding: Promise and Pitfalls , 2022 .

[70]  J. Reed,et al.  Balkan biodiversity : pattern and process in the European hotspot , 2004 .

[71]  P. Bănărescu Distribution Pattern of the Aquatic Fauna of the Balkan Peninsula , 2004 .

[72]  C. Muster,et al.  Vicariance in a Cryptic Species Pair of European Pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae) , 2004 .

[73]  J. Reed Balkan Biodiversity , 2004, Springer Netherlands.

[74]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[75]  N. Matočec,et al.  An overview of the cave and interstitial biota of Croatia , 2002 .

[76]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[77]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[78]  C. Moritz Defining 'Evolutionarily Significant Units' for conservation. , 1994, Trends in ecology & evolution.

[79]  B. Ćurčić Cave-dwelling pseudoscorpions of the Dinaric Karst. , 1988 .

[80]  Joseph Felsenstein,et al.  Maximum Likelihood and Minimum-Steps Methods for Estimating Evolutionary Trees from Data on Discrete Characters , 1973 .