Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism
暂无分享,去创建一个
[1] F. Altermatt,et al. The European Green Deal misses Europe’s subterranean biodiversity hotspots , 2022, Nature Ecology & Evolution.
[2] L. Yao,et al. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea) , 2022, Molecular ecology resources.
[3] E. Haring,et al. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region , 2021, Journal of Zoological Systematics and Evolutionary Research.
[4] C. Muster,et al. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions , 2021, Ecology and evolution.
[5] G. Gardini. The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. , 2021, Zootaxa.
[6] O. Seehausen,et al. A subterranean adaptive radiation of amphipods in Europe , 2021, Nature Communications.
[7] N. Vesović,et al. Roncus sutikvae sp.n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia) , 2021, Arthropoda Selecta.
[8] P. Bork,et al. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..
[9] S. Ćurčić,et al. Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively , 2021 .
[10] Ligia R. Benavides,et al. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions , 2020, bioRxiv.
[11] S. Brouillet,et al. ASAP: assemble species by automatic partitioning , 2020, Molecular ecology resources.
[12] C. Fišer,et al. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles , 2020, Journal of Biogeography.
[13] Z. Šatović,et al. Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers , 2020, Plant Systematics and Evolution.
[14] M. Lukić,et al. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae) , 2020, Zoologica Scripta.
[15] Olga Chernomor,et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.
[16] S. Taiti,et al. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae) , 2019, Zoological Journal of the Linnean Society.
[17] M. Zagmajster,et al. Contribution of rare and common species to subterranean species richness patterns , 2019, Ecology and evolution.
[18] M. Harvey,et al. Climate variability impacts on diversification processes in a biodiversity hotspot: a phylogeography of ancient pseudoscorpions in south-western Australia , 2019, Zoological Journal of the Linnean Society.
[19] Emmanuel Paradis,et al. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..
[20] Kazutaka Katoh,et al. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..
[21] P. Trontelj. Adaptation and natural selection in caves , 2019, Encyclopedia of Caves.
[22] Jean‐François Flot,et al. The hitchhiker's guide to single‐locus species delimitation , 2018, Molecular ecology resources.
[23] Sudhir Kumar,et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.
[24] M. Suchard,et al. Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .
[25] J. Velić,et al. An geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia , 2017 .
[26] A. von Haeseler,et al. UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.
[27] C. Fišer,et al. The importance of naming cryptic species and the conservation of endemic subterranean amphipods , 2017, Scientific Reports.
[28] C. Fišer,et al. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda) , 2017 .
[29] J. Zaragoza. Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). , 2017, Zootaxa.
[30] J. Vörös,et al. Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA , 2017, PloS one.
[31] Robert Lanfear,et al. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.
[32] Roderic D M Page,et al. DNA barcoding and taxonomy: dark taxa and dark texts , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.
[33] V. Baranov,et al. Blind Flight? A New Troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama – Trojama Cave in Croatia , 2016, PloS one.
[34] Jeremy R. deWaard,et al. Untangling taxonomy: a DNA barcode reference library for Canadian spiders , 2016, Molecular ecology resources.
[35] P. Trontelj,et al. Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro , 2016, Arthropod Systematics & Phylogeny.
[36] David Bryant,et al. popart: full‐feature software for haplotype network construction , 2015 .
[37] R. Jovani,et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies , 2015, Molecular Ecology Resources.
[38] P. Hebert,et al. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida , 2015, PloS one.
[39] D. Antić,et al. Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. , 2015, Zootaxa.
[40] G. Gardini. The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. , 2014, Zootaxa.
[41] Paul D N Hebert,et al. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows , 2014, Molecular ecology resources.
[42] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[43] S. Ćurčić,et al. ON TWO NEW CAVE SPECIES OF PSEUDOSCORPIONS (NEOBISIIDAE, PSEUDOSCORPIONES) FROM HERZEGOVINA AND DALMATIA , 2014 .
[44] Jiajie Zhang,et al. A general species delimitation method with applications to phylogenetic placements , 2013, Bioinform..
[45] Sujeevan Ratnasingham,et al. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System , 2013, PloS one.
[46] G. Gardini. A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. , 2013, Zootaxa.
[47] B. Morton,et al. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst , 2013, Frontiers in Zoology.
[48] A. Casale,et al. Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini) , 2012 .
[49] S. Boyer,et al. Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding , 2012, Molecular ecology resources.
[50] A. Lambert,et al. ABGD, Automatic Barcode Gap Discovery for primary species delimitation , 2012, Molecular ecology.
[51] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[52] Charles F. F. Karney. Algorithms for geodesics , 2011, Journal of Geodesy.
[53] B. Šket. Diversity Patterns in the Dinaric Karst , 2012 .
[54] B. Ćurčić,et al. Archaeoroncus, a New Genus of Pseudoscorpions from Croatia (Pseudoscorpiones: Neobisiidae), with Descriptions of Two New Species , 2012 .
[55] P. Fedor,et al. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia , 2011 .
[56] Mark A. Miller,et al. Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).
[57] O. Gascuel,et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.
[58] F. Médail,et al. Glacial refugia influence plant diversity patterns in the Mediterranean Basin , 2009 .
[59] D. Culver,et al. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions , 2009 .
[60] M. Vences,et al. Molecular Identification of Birds: Performance of Distance-Based DNA Barcoding in Three Genes to Delimit Parapatric Species , 2009, PloS one.
[61] D. Maddison,et al. Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .
[62] F. Šťáhlavský,et al. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology , 2008 .
[63] Palle Villesen,et al. FaBox: an online toolbox for fasta sequences , 2007 .
[64] Gerard Talavera,et al. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.
[65] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[66] David J. Lohman,et al. Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.
[67] Gaurav Vaidya,et al. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.
[68] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[69] C. Cicero,et al. Open access, freely available online Correspondence DNA Barcoding: Promise and Pitfalls , 2022 .
[70] J. Reed,et al. Balkan biodiversity : pattern and process in the European hotspot , 2004 .
[71] P. Bănărescu. Distribution Pattern of the Aquatic Fauna of the Balkan Peninsula , 2004 .
[72] C. Muster,et al. Vicariance in a Cryptic Species Pair of European Pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae) , 2004 .
[73] J. Reed. Balkan Biodiversity , 2004, Springer Netherlands.
[74] Jeremy R. deWaard,et al. Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[75] N. Matočec,et al. An overview of the cave and interstitial biota of Croatia , 2002 .
[76] G. Hewitt. The genetic legacy of the Quaternary ice ages , 2000, Nature.
[77] R. Mittermeier,et al. Biodiversity hotspots for conservation priorities , 2000, Nature.
[78] C. Moritz. Defining 'Evolutionarily Significant Units' for conservation. , 1994, Trends in ecology & evolution.
[79] B. Ćurčić. Cave-dwelling pseudoscorpions of the Dinaric Karst. , 1988 .
[80] Joseph Felsenstein,et al. Maximum Likelihood and Minimum-Steps Methods for Estimating Evolutionary Trees from Data on Discrete Characters , 1973 .