Dealing with Missing Data in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems
暂无分享,去创建一个
[1] A. Skowron,et al. Methodology and applications , 1998 .
[2] Z. Pawlak,et al. Rough set approach to multi-attribute decision analysis , 1994 .
[3] C. Zopounidis. Operational tools in the management of financial risks , 1997 .
[4] Andrzej Skowron,et al. From the Rough Set Theory to the Evidence Theory , 1991 .
[5] Salvatore Greco,et al. Handling Missing Values in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 1999, RSFDGrC.
[6] B. Roy. Méthodologie multicritère d'aide à la décision , 1985 .
[7] Thorsten Kuhlmann,et al. Intelligent decision support , 1998 .
[8] Roman Słowiński,et al. A New Rough Set Approach to Evaluation of Bankruptcy Risk , 1998 .
[9] Jerzy W. Grzymala-Busse,et al. LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.
[10] Lech Polkowski,et al. Rough Sets in Knowledge Discovery 2 , 1998 .
[11] Roman Słowiński,et al. The Use of Rough Sets and Fuzzy Sets in MCDM , 1999 .
[12] Nicolas Danila. Roy B. : Méthodologie multicritère d'aide à la décision , 1986 .
[13] Salvatore Greco,et al. A New Rough Set Approach to Multicriteria and Multiattribute Classification , 1998, Rough Sets and Current Trends in Computing.
[14] Janusz Zalewski,et al. Rough sets: Theoretical aspects of reasoning about data , 1996 .
[15] R. Słowiński. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .
[16] J. Kacprzyk,et al. Advances in the Dempster-Shafer theory of evidence , 1994 .