Bessel polynomial solutions of high-order linear Volterra integro-differential equations

Abstract In this study, a practical matrix method, which is based on collocation points, is presented to find approximate solutions of high-order linear Volterra integro-differential equations (VIDEs) under the mixed conditions in terms of Bessel polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and comparisons are made with the existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on the computer using a program written in MATLAB v7.6.0 (R2008a).

[1]  M. T. Rashed Numerical solution of functional differential, integral and integro-differential equations , 2004, Appl. Math. Comput..

[2]  Eduardo L. Ortiz,et al.  An operational approach to the Tau method for the numerical solution of non-linear differential equations , 1981, Computing.

[3]  Khosrow Maleknejad,et al.  Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..

[4]  S. Shahmorad,et al.  Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation , 2003, Appl. Math. Comput..

[5]  Drumi D. Bainov,et al.  Oscillation of the bounded solutions of impulsive differential-difference equations of second order , 2000, Appl. Math. Comput..

[6]  Mehmet Sezer,et al.  A Bessel collocation method for numerical solution of generalized pantograph equations , 2012 .

[7]  Weiming Wang,et al.  A new algorithm for integral of trigonometric functions with mechanization , 2005, Appl. Math. Comput..

[8]  E. Ortiz,et al.  On the numerical solution of nonlinear and functional differential equations with the tau method , 1978 .

[9]  Ahmet Yildirim,et al.  Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method , 2008, Comput. Math. Appl..

[10]  Mehmet Sezer,et al.  Polynomial solution of the most general linear Fredholm integrodifferential–difference equations by means of Taylor matrix method , 2005 .

[11]  Esmail Babolian,et al.  Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration , 2007, Appl. Math. Comput..

[12]  A. Makroglou Convergence of a block-by-block method for nonlinear Volterra integro-differential equations , 1980 .

[13]  Jinde Cao,et al.  Delay-dependent robust stability of uncertain nonlinear systems with time delay , 2004, Appl. Math. Comput..

[14]  M. K. Kadalbajoo,et al.  Numerical analysis of singularly perturbed delay differential equations with layer behavior , 2004, Appl. Math. Comput..

[15]  M. Reihani,et al.  Rationalized Haar functions method for solving Fredholm and Volterra integral equations , 2007 .

[16]  Robert M. Corless,et al.  Compact finite difference method for integro-differential equations , 2006, Appl. Math. Comput..

[17]  M. K. Kadalbajoo,et al.  Numerical Analysis of Boundary-Value Problems for Singularly-Perturbed Differential-Difference Equations with Small Shifts of Mixed Type , 2002 .

[18]  Khosrow Maleknejad,et al.  Numerical solution of linear Fredholm integral equation by using hybrid Taylor and Block-Pulse functions , 2004, Appl. Math. Comput..

[19]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[20]  Mehmet Sezer,et al.  Taylor polynomial solutions of Volterra integral equations , 1994 .

[21]  Esmail Babolian,et al.  Comparison between the homotopy perturbation method and the sine-cosine wavelet method for solving linear integro-differential equations , 2007, Comput. Math. Appl..

[22]  M. Zarebnia,et al.  SINC NUMERICAL SOLUTION FOR THE VOLTERRA INTEGRO-DIFFERENTIAL EQUATION , 2010 .

[23]  Hermann Brunner,et al.  Continuous collocation approximations to solutions of first kind Volterra equations , 1997, Math. Comput..

[24]  Mehmet Sezer,et al.  A new Taylor collocation method for nonlinear Fredholm-Volterra integro-differential equations , 2010 .

[25]  Han Dan-fu,et al.  Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration , 2007 .

[26]  Mehmet Sezer,et al.  Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients , 2008, J. Frankl. Inst..

[27]  Mehmet Sezer,et al.  The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials , 2000, Appl. Math. Comput..

[28]  Mehmet Sezer,et al.  Legendre polynomial solutions of high-order linear Fredholm integro-differential equations , 2009, Appl. Math. Comput..

[29]  Chun-Hui Hsiao,et al.  Hybrid function method for solving Fredholm and Volterra integral equations of the second kind , 2009 .

[30]  Christopher E. Elmer,et al.  A Variant of Newton's Method for the Computation of Traveling Waves of Bistable Differential-Difference Equations , 2002 .

[31]  Yüzbaşi A Collocation Approach to Solve a Class of Lane-Emden Type Equations , 2011 .

[32]  S. Shahmorad,et al.  Numerical solution of the system of Fredholm integro-differential equations by the Tau method , 2005, Appl. Math. Comput..

[33]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[34]  Bo Zhang,et al.  A simple Taylor-series expansion method for a class of second kind integral equations , 1999 .

[35]  Erik S. Van Vleck,et al.  Traveling Wave Solutions for Bistable Differential-Difference Equations with Periodic Diffusion , 2001, SIAM J. Appl. Math..

[36]  Parviz Darania,et al.  A method for the numerical solution of the integro-differential equations , 2007, Appl. Math. Comput..

[37]  Hermann Brunner,et al.  Discontinuous Galerkin approximations for Volterra integral equations of the first kind , 2009 .

[38]  Mehmet Sezer,et al.  Solution of high-order linear Fredholm integro-differential equations with piecewise intervals , 2011 .

[39]  Mohsen Razzaghi,et al.  Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations , 2005, Math. Comput. Simul..

[40]  Hehu Xie,et al.  Discontinuous Galerkin Methods for Delay Differential Equations of Pantograph Type , 2010, SIAM J. Numer. Anal..

[41]  Abdul-Majid Wazwaz,et al.  The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations , 2010, Appl. Math. Comput..

[42]  Mehdi Dehghan,et al.  Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients , 2010, Comput. Math. Appl..

[43]  Mehmet Sezer,et al.  Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations , 2005, J. Frankl. Inst..

[44]  E. Yusufoglu,et al.  IMPROVED HOMOTOPY PERTURBATION METHOD FOR SOLVING FREDHOLM TYPE INTEGRO-DIFFERENTIAL EQUATIONS , 2009 .

[45]  M. H. Aliabadi,et al.  A matrix formulation of the Tau Method for Fredholm and Volterra linear integro-differential equations , 2002 .

[46]  Farshid Mirzaee,et al.  Numerical solution of integro‐differential equations by using rationalized Haar functions method , 2006 .

[47]  Esmail Babolian,et al.  Numerical solution of linear integro-differential equation by using sine-cosine wavelets , 2006, Appl. Math. Comput..

[48]  Handan Çerdik-Yaslan,et al.  An approximation method for the solution of nonlinear integral equations , 2006, Appl. Math. Comput..

[49]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..