Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog

[1]  H. Tauber,et al.  Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Deninark , 2008 .

[2]  K. Schoning,et al.  A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data , 2006 .

[3]  S. Hicks,et al.  Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: Potential for using fossil pollen as a climate proxy , 2004 .

[4]  J. van der Plicht,et al.  Carbon‐14 wiggle‐match dating of peat deposits: advantages and limitations , 2004 .

[5]  B. van Geel,et al.  A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals , 2003 .

[6]  J. Plicht,et al.  High-resolution records of late Holocene climate change and carbon accumulation in two North-West European ombrotrophic peat bogs , 2002 .

[7]  J. van der Plicht,et al.  Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity , 2002 .

[8]  F. Berendse,et al.  Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation , 2001 .

[9]  B. Geel,et al.  Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching , 2000 .

[10]  B. Geel,et al.  14C AMS wiggle matching of raised bog deposits and models of peat accumulation , 2000 .

[11]  V. Dergachev,et al.  The role of solar forcing upon climate change , 1999 .

[12]  L. Björkman The role of human disturbance in the local Late Holocene establishment of Fagus and Picea forests at Flahult, Western Småland, Southern Sweden , 1997 .

[13]  E. Bering,et al.  The Role of the Sun in Climate Change , 1997 .

[14]  B. van Geel,et al.  Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP , 1996 .

[15]  L. R. Belyea,et al.  Temporal scale and the accumulation of peat in a Sphagnum bog , 1996 .

[16]  R. Tipping Holocene evolution of a lowland Scottish landscape: Kirkpatrick Fleming. Part I, peat- and pollen-stratigraphic evidence for raised moss development and climatic change , 1995 .

[17]  N. Malmer,et al.  Interactions betweenSphagnum mosses and field layer vascular plants in the development of peat-forming systems , 1994, Folia Geobotanica et Phytotaxonomica.

[18]  A. W. Damman,et al.  Species-controlled Sphagnum decay on a South Swedish raised bog , 1991 .

[19]  H. Birks,et al.  Anthropogenic indicators in pollen diagrams , 1988 .

[20]  B. Geel,et al.  Vegetational history of Carbury Bog (Co. Kildare, Ireland) during the last 850 years and a test of the temperature indicator value of 2H/1H measurements of peat samples in relation to historical sources and meteorological data , 1988 .

[21]  J. Beer,et al.  Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core , 1988, Nature.

[22]  E. C. Wardenaar A new hand tool for cutting soil monoliths , 1987 .

[23]  A. A. Middeldorp Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog ecosystem , 1982 .

[24]  A. Smith The Moss Flora of Britain and Ireland , 1978 .

[25]  K. Faegri,et al.  Textbook of Pollen Analysis , 1965 .

[26]  S. Hicks,et al.  Radiocarbon Dating of Modern Peat Profiles: Pre- and Post-Bomb 14C Variations in the Construction of Age-Depth Models , 2005, Radiocarbon.

[27]  K. van der Borg,et al.  A Novel Approach for Developing High-Resolution Sub-Fossil Peat Chronologies with 14C Dating , 2004, Radiocarbon.

[28]  B. Geel,et al.  Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence , 2002 .

[29]  C. Lohse,et al.  High-resolution AMS 14C dating of post bomb peat archives of atmospheric pollutants , 2001 .

[30]  I. Levin,et al.  RADIOCARBON - A UNIQUE TRACER OF GLOBAL CARBON CYCLE DYNAMICS , 2000 .

[31]  Janken Myrdal Jordbruket under feodalismen 1000-1700 , 1999 .

[32]  P. Reimer,et al.  High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples , 1998, Radiocarbon.

[33]  L. Björkman The Late Holocene history of beech Fagus sylvatica and Norway spruce Picea abies at stand-scale in southern Sweden , 1996 .

[34]  B. van Geel,et al.  Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change , 1995 .

[35]  J Vanderplicht,et al.  THE GRONINGEN RADIOCARBON CALIBRATION PROGRAM , 1993 .

[36]  J. Blackford,et al.  Determining the degree of peat decomposition for peat-based palaeoclimatic studies , 1993 .

[37]  B. Geel,et al.  High-Resolution 14C Dating of Organic Deposits Using Natural Atmospheric 14C Variations , 1989, Radiocarbon.

[38]  R. S. Clymo,et al.  The Ecology of Sphagnum , 1982 .

[39]  B. Geel A palaeoecological study of holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals , 1978 .

[40]  J. Stockmarr Tablets with spores used in absolute pollen analysis , 1971 .

[41]  Hans-Jürgen Beug,et al.  Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete , 1961 .

[42]  Eric Hulten,et al.  Atlas över växternas utbredning i Norden , 1950 .