Kappa Distributions: Theory and Applications in Space Plasmas

The plasma particle velocity distributions observed in the solar wind generally show enhanced (non-Maxwellian) suprathermal tails, decreasing as a power law of the velocity and well described by the family of Kappa distribution functions. The presence of non-thermal populations at different altitudes in space plasmas suggests a universal mechanism for their creation and important consequences concerning plasma fluctuations, the resonant and nonresonant wave – particle acceleration and plasma heating. These effects are well described by the kinetic approaches where no closure requires the distributions to be nearly Maxwellian. This paper summarizes and analyzes the various theories proposed for the Kappa distributions and their valuable applications in coronal and space plasmas.

[1]  D. C. Hamilton,et al.  Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.

[2]  George Livadiotis,et al.  Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas , 2009 .

[3]  C. Russell,et al.  Mirror modes: Non-Maxwellian distributions , 2000, physics/0009040.

[4]  M. Hellberg,et al.  Electron-acoustic waves in the laboratory: an experiment revisited , 2000, Journal of Plasma Physics.

[5]  A. Klimas,et al.  Generation of Electron Suprathermal Tails in the Upper Solar Atmosphere: Implications for Coronal Heating , 2000 .

[6]  R. Mace Whistler instability enhanced by suprathermal electrons within the Earth's foreshock , 1998 .

[7]  H. Garrett,et al.  Comparison of spacecraft charging environments at the Earth, Jupiter, and Saturn , 1998 .

[8]  Akira Kadokura,et al.  Two‐dimensional numerical modeling of the cosmic ray storm , 1986 .

[9]  J. Raymond,et al.  Ultraviolet Emission-Line Intensities and Coronal Heating by Velocity Filtration: Collisionless Results , 1996 .

[10]  Kappa-like distribution functions inside magnetic clouds , 2008 .

[11]  M. Maksimović,et al.  Self‐consistent model of solar wind electrons , 2001 .

[12]  N. Pogorelov,et al.  The Effects of a κ-Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU , 2008, 0803.2538.

[13]  M. Hellberg,et al.  The electron-acoustic mode in a plasma with hot suprathermal and cool Maxwellian electrons , 1999 .

[14]  S. Landi,et al.  On the temperature profile and heat flux in the solar corona: Kinetic simulations , 2001 .

[15]  M. Maksimović,et al.  Core, Halo and Strahl Electrons in the Solar Wind , 2001 .

[16]  R. Lin,et al.  Electron Halo and Strahl Formation in the Solar Wind by Resonant Interaction with Whistler Waves , 2005 .

[17]  Kinetic Theoretical Foundation of Lorentzian Statistical Mechanics , 1998, physics/9807010.

[18]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[19]  Qinghua Zhou,et al.  Instability of whistler-mode waves by a relativistic kappa-loss-cone distribution in space plasmas , 2006 .

[20]  R. Thorne,et al.  Instability of electromagnetic R-mode waves in a relativistic plasma , 1998 .

[21]  Ioannis Kourakis,et al.  Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons , 2009 .

[22]  Generalized-Lorentzian Thermodynamics , 1998, physics/9808037.

[23]  K. Stegen,et al.  A three‐dimensional dynamic kinetic model of the plasmasphere , 2008 .

[24]  Y. Ralchenko,et al.  Is There a High-Energy Particle Population in the Quiet Solar Corona? , 2007 .

[25]  M. Leubner,et al.  Mirror instability thresholds in suprathermal space plasmas , 2000 .

[26]  R. Mace Generalized electron Bernstein modes in a plasma with a kappa velocity distribution , 2004 .

[27]  James A. Miller Magnetohydrodynamic turbulence dissipation and stochastic proton acceleration in solar flares , 1991 .

[28]  M. Collier Are magnetospheric suprathermal particle distributions (κ functions) inconsistent with maximum entropy considerations , 2004 .

[29]  C. Mitchell,et al.  Ionospheric storm time dynamics as seen by GPS tomography and in situ spacecraft observations , 2008 .

[30]  James A. Miller Electron Acceleration in Solar Flares by Fast Mode Waves: Quasi-linear Theory and Pitch-Angle Scattering , 1997 .

[31]  R. Thorne,et al.  Landau damping in space plasmas , 1991 .

[32]  Andrew J. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. II. Radial variations , 2004 .

[33]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[34]  B. Basu Low Frequency Electrostatic Waves in Weakly Inhomogeneous Magnetoplasma Modeled by Lorentzian (kappa) Distributions , 2008 .

[35]  D. Decker,et al.  Upgoing electrons produced in an electron‐proton‐hydrogen atom aurora , 1995 .

[36]  Tang Lijun,et al.  Proton Cyclotron Instability Threshold Condition of Suprathermal Protons by Kappa Distribution , 2007 .

[37]  B. Basu Hydromagnetic waves and instabilities in kappa distribution plasma , 2009 .

[38]  J. Lemaire,et al.  Fitting the AE-8 energy spectra with two maxwellian functions , 1996 .

[39]  D. Summers,et al.  Growth and damping of oblique electromagnetic ion cyclotron waves in the Earth's magnetosphere , 1996 .

[40]  C. Farrugia,et al.  A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections , 2003 .

[41]  M. Collier On generating Kappa‐like distribution functions using velocity space Lévy flights , 1993 .

[42]  S. Poedts,et al.  Counterstreaming magnetized plasmas with kappa distributions – I. Parallel wave propagation , 2008 .

[43]  Richard L. Mace,et al.  A dispersion function for plasmas containing superthermal particles , 1995 .

[44]  R. P. Singhal,et al.  Whistler-mode instability in magnetospheres of Uranus and Neptune , 2008 .

[45]  R. Thorne,et al.  A new tool for analyzing microinstabilities in space plasmas modeled by a generalized Lorentzian (Kappa) distribution , 1992 .

[46]  V. Formisano,et al.  Solar wind interaction with the Earth's magnetic field: 1. Magnetosheath , 1973 .

[47]  M. Leubner,et al.  A general kinetic mirror instability criterion for space applications , 2001 .

[48]  G. Gloeckler,et al.  Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .

[49]  N. Meyer‐Vernet Large scale structure of planetary environments: the importance of not being Maxwellian , 2001 .

[50]  P. Riley,et al.  Ulysses electron distributions fitted with Kappa functions , 1997 .

[51]  M. Moncuquet,et al.  Latitudinal structure of outer Io plasma torus , 2002 .

[52]  J. Lemaire,et al.  Lorentzian ion exosphere model , 1996 .

[53]  M. Leubner,et al.  A universal mirror wave-mode threshold condition for non-thermal space plasma environments , 2001 .

[54]  M. Collier The adiabatic transport of superthermal distributions modelled by Kappa Functions , 1995 .

[55]  M. Karlický,et al.  EUV filter responses to plasma emission for the nonthermal κ-distributions , 2009 .

[56]  V. Hansteen,et al.  Kinetic electrons in high-speed solar wind streams: Formation of high-energy tails , 1997 .

[57]  Young-Dae Jung,et al.  Coulomb Focusing Corrections on Bremsstrahlung Emission from Anisotropic bi-Lorentzian Distribution Plasmas , 2004 .

[58]  R. Treumann Statistical Mechanics of Stable States Far from Equilibrium: Thermodynamics of Turbulent Plasmas , 2001 .

[59]  D. Summers,et al.  Correction to “Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves” , 1999 .

[60]  G. Gloeckler,et al.  Acceleration and Composition of Solar Wind Suprathermal Tails , 2007 .

[61]  S. Livi,et al.  Coulomb collision rates for self-similar and kappa distributions. [For space plasmas] , 1985 .

[62]  F. Keenan,et al.  Evidence for Non-Maxwellian Electron Energy Distributions in the Solar Transition Region: Si III Line Ratios from SUMER , 1999 .

[63]  G. Murtaza,et al.  Some electrostatic modes based on non-Maxwellian distribution functions , 2004 .

[64]  J. Scudder,et al.  Electron heat flow carried by Kappa Distributions in the solar corona , 1999 .

[65]  R. Thorne,et al.  Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function , 1994 .

[66]  I. Zouganelis Measuring suprathermal electron parameters in space plasmas : Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind , 2008 .

[67]  J. Lemaire,et al.  Correction to “Lorentzian ion exosphere model” , 1998 .

[68]  E. C. Shoub Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I - Fokker-Planck results , 1983 .

[69]  M. Maksimović,et al.  Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses Observations , 2009 .

[70]  S. Krimigis,et al.  Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements , 2009 .

[71]  R. F. Donnelly Comparison of nonflare solar soft X ray flux with 10.7‐cm radio flux , 1982 .

[72]  R. Mace A DIELECTRIC TENSOR FOR MAGNETOPLASMAS COMPRISING COMPONENTS WITH GENERALIZED LORENTZIAN DISTRIBUTIONS , 1996 .

[73]  Firenze,et al.  Acceleration of Weakly Collisional Solar-Type Winds , 2005, astro-ph/0505324.

[74]  G. Mann,et al.  Formation of suprathermal electron distributions in the quiet solar corona , 2008 .

[75]  T. Cattaert,et al.  Oblique propagation of electromagnetic waves in a kappa-Maxwellian plasma , 2007 .

[76]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[77]  M. P. Leubner,et al.  A Nonextensive Entropy Approach to Solar Wind Intermittency , 2004, astro-ph/0409497.

[78]  M. Karlický,et al.  Kappa distribution and hard X-ray emission of solar flares , 2009, 0902.3574.

[79]  H. Rosenbauer,et al.  Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU , 1990 .

[80]  N. Meyer‐Vernet,et al.  Electrostatic noise in non‐Maxwellian plasmas: Generic properties and “kappa” distributions , 1991 .

[81]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[82]  George Gloeckler,et al.  The Common Spectrum for Accelerated Ions in the Quiet-Time Solar Wind , 2006 .

[83]  H. Biernat,et al.  Influence of κ-distributed ions on the two-stream instability , 2005 .

[84]  V. Pierrard New model of magnetospheric current‐voltage relationship , 1996 .

[85]  G. Mann,et al.  Generation of Suprathermal Electrons by Resonant Wave-Particle Interaction in the Solar Corona and Wind , 2003 .

[86]  M. Leubner Wave induced suprathermal tail generation of electron velocity space distributions , 2000 .

[87]  A. Hundhausen,et al.  SOLAR WIND ELECTRONS: VELA 4 MEASUREMENTS. , 1968 .

[88]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[89]  W. I. Axford,et al.  The Magnetosphere of Uranus: Hot Plasma and Radiation Environment , 1986, Science.

[90]  A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.

[91]  J. Scudder Why all stars should possess circumstellar temperature inversions , 1992 .

[92]  M. Leubner Consequences of entropy bifurcation in non-Maxwellian astrophysical environments , 2008 .

[93]  Edgar,et al.  Reconciling Spectroscopic Electron Temperature Measurements in the Solar Corona with In Situ Charge State Observations , 2000, The Astrophysical journal.

[94]  Richard M. Thorne,et al.  The modified plasma dispersion function , 1991 .

[95]  A. Hundhausen,et al.  Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection , 1993 .

[96]  G. Gloeckler,et al.  AMPTE Ion Composition Results , 1987 .

[97]  W. Feldman,et al.  Interpenetrating solar wind streams. , 1974 .

[98]  S. Poedts,et al.  Counterstreaming magnetized plasmas with kappa distributions – II. Perpendicular wave propagation , 2010 .

[99]  Constantino Tsallis,et al.  Non-extensive thermostatistics: brief review and comments , 1995 .

[100]  Louis J. Lanzerotti,et al.  Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .

[101]  M. Maksimović,et al.  A Transonic Collisionless Model of the Solar Wind , 2004, astro-ph/0402358.

[102]  T. H. Zerguini,et al.  Alternative dust acoustic solitary waves in a plasma consisting of superthermal electrons and nonthermal ions having kappa-vortex-like velocity distribution function , 2009 .

[103]  R. Treumann,et al.  Electrostatic fluctuations in plasmas containing suprathermal particles , 1998, Journal of Plasma Physics.

[104]  R. S. Pandey,et al.  COLD PLASMA INJECTION ON VLF WAVE MODE FOR RELATIVISTIC MAGNETOPLASMA WITH A.C. ELECTRIC FIELD , 2008 .

[105]  R. Treumann,et al.  Stationary plasma states far from equilibrium , 2004 .

[106]  R. Thorne,et al.  Analytical solutions to the general problem of oblique wave growth and damping , 1986 .

[107]  J. Podesta Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons , 2008 .

[108]  J. Lemaire,et al.  Kinetic Models of Solar and Polar Winds , 1973 .

[109]  T. Cattaert,et al.  Effects of Superthermal Particles on Waves in Magnetized Space Plasmas , 2005 .

[110]  J. Scudder,et al.  On the causes of temperature change in inhomogeneous low-density astrophysical plasmas , 1992 .

[111]  D. Ruffolo,et al.  Ionization Fractions of Slow Ions in a Plasma with Kappa Distributions for the Electron Velocity , 2003 .

[112]  D. Hamilton,et al.  The relationship between kappa and temperature in energetic ion spectra at Jupiter , 1995 .

[113]  V. Pierrard,et al.  The Effects of the Velocity Filtration Mechanism on the Minor Ions of the Corona , 2003 .

[114]  G. Gloeckler,et al.  Anisotropic Beams of Energetic Particles Upstream from the Termination Shock of the Solar Wind , 2006 .

[115]  B. Shizgal Suprathermal particle distributions in space physics: Kappa distributions and entropy , 2007 .

[116]  A. Magnus,et al.  Formulas for recurrence coefficients of orthogonal polynomials related to Lorentzian-like weights , 2008 .

[117]  D. Summers,et al.  Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves , 1998, physics/9810049.

[118]  Nathan A. Schwadron,et al.  The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind , 2000 .

[119]  M. Tribeche,et al.  Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution , 2008 .

[120]  J. Scudder Ion and electron suprathermal tail strengths in the transition region: Support for the velocity filtration model of the corona , 1994 .

[121]  W. Feldman,et al.  Solar wind electrons , 1975 .

[122]  M. Moncuquet,et al.  Temperature Inversion in the Io Plasma Torus , 1995 .

[123]  A. Viñas,et al.  Stability analysis of double‐peaked proton distribution functions in the solar wind , 1986 .

[124]  M. Leubner Fundamental issues on kappa-distributions in space plasmas , 2003 .

[125]  H. Abbasi,et al.  Adiabatic evolution of phase space electron–hole in plasmas with super-thermal electrons , 2008 .

[126]  Herve Lamy,et al.  A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for the protons , 2003 .

[127]  M. Maksimović,et al.  A kinetic model of the solar wind with Kappa distribution functions in the corona. , 1997 .

[128]  M. Hellberg,et al.  Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution , 2002 .

[129]  J. Lemaire,et al.  A Monte Carlo Simulation of the H+ Polar Wind: Effect of Velocity Distributions with Kappa Suprathermal Tails , 2001 .

[130]  K. D. Misra,et al.  Whistler Mode Instability in a Lorentzian (κ) Magnetoplasma in the Presence of Perpendicular A.C. Electric Field and Cold Plasma Injection , 2000 .

[131]  M. Leubner Core-Halo Distribution Functions: A Natural Equilibrium State in Generalized Thermostatistics , 2004 .

[132]  F. Xiao,et al.  Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas , 2006 .

[133]  J. Lemaire,et al.  Exospheric distributions of minor ions in the solar wind , 2004 .

[134]  M. Maksimović,et al.  Quasi-thermal noise in space plasma: “kappa” distributions , 2009 .

[135]  E. W. Hones,et al.  Characteristics of the plasma sheet in the Earth's magnetotail , 1967 .

[136]  R. Benson,et al.  Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations , 2005 .

[137]  I. Kourakis,et al.  Comment on 'Mathematical and physical aspects of Kappa velocity distribution' [Phys. Plasmas 14, 110702 (2007)] , 2009 .

[138]  S. Christon A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .

[139]  J. F. Mckenzie,et al.  The solar wind ion composition spectrometer , 1992 .

[140]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[141]  Barry H. Mauk,et al.  The magnetosphere of Neptune: Hot plasmas and energetic particles , 1991 .

[142]  T. Eastman,et al.  Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions , 1988 .

[143]  R. Sagdeev,et al.  Linear theory of the mirror instability in non‐Maxwellian space plasmas , 2002 .

[144]  F. Xiao,et al.  Energetic particles modeled by a generalized relativistic kappa-type distribution function in plasmas , 2008 .

[145]  V. Pierrard Kinetic models for the exospheres of Jupiter and Saturn , 2009 .

[146]  J. Scudder,et al.  Auroral source region: Plasma properties of the high-latitude plasma sheet , 2003 .

[147]  Stefaan Poedts,et al.  Firehose instability in space plasmas with bi-kappa distributions , 2009 .

[148]  M. Leubner On Jupiter's whistler emission , 1982 .

[149]  Jianping Li,et al.  Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970s , 2007 .

[150]  R. Treumann Theory of super‐diffusion for the magnetopause , 1997 .

[151]  Roberto D'Agosta,et al.  Electrostatic Landau pole for κ-velocity distributions , 2007 .

[152]  R. Wiens,et al.  Suprathermal electrons in high‐speed streams from coronal holes: Counterstreaming on open field lines at 1 AU , 2005 .

[153]  Can Huang,et al.  Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions , 1989 .

[154]  R. Mace A Gordeyev integral for electrostatic waves in a magnetized plasma with a kappa velocity distribution , 2003 .

[155]  J. Lemaire,et al.  Exospheric model of the plasmasphere , 2001 .

[156]  H. Rosenbauer,et al.  Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment , 1987 .

[157]  R. Thorne,et al.  Electromagnetic ion‐cyclotron instability in space plasmas , 1993 .

[158]  J. Scudder,et al.  A THEORY OF LOCAL. AND GLOBAL PROCESSES WHICH AFFECT SOLAR WIND ELECTRONS , 2011 .

[159]  Milan Maksimovic,et al.  Electron velocity distribution functions from the solar wind to the corona , 1999 .

[160]  D. Strobel,et al.  Io's auroral limb glow: Hubble Space Telescope FUV observations , 2003 .

[161]  J. Podesta Spatial Landau damping in plasmas with three-dimensional κ distributions , 2005 .

[162]  W. Feldman,et al.  Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond ∼2 Au: Ulysses , 1993 .

[163]  J. Geiss,et al.  Limitations on suprathermal tails of electrons in the lower solar corona , 1996 .

[164]  S. Nozawa,et al.  Effects of a kappa distribution function of electrons on incoherent scatter spectra , 2000 .

[165]  E. Dzifčáková The Influence of the Electron κ-Distribution in the Solar Corona on the Fe VIII – Fe XV Line Intensities , 2006 .

[166]  R. Thorne,et al.  Parametric study of electromagnetic ion cyclotron instability in the Earth's magnetosphere , 1996 .

[167]  R. Treumann,et al.  Gibbsian theory of power-law distributions. , 2007, Physical review letters.

[168]  N. Meyer‐Vernet How does the solar wind blow? A simple kinetic model , 1999 .

[169]  Hasegawa,et al.  Plasma distribution function in a superthermal radiation field. , 1985, Physical review letters.

[170]  M. Leubner High‐energy tail distributions and resonant wave particle interaction , 1983 .

[171]  P. Janhunen,et al.  Field-aligned conductance values estimated from Maxwellian and kappa distributions in quiet and disturbed events using Freja electron data , 1998 .

[172]  Louis J. Lanzerotti,et al.  General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft , 1983 .