Kappa Distributions: Theory and Applications in Space Plasmas
暂无分享,去创建一个
M. Lazar | V. Pierrard | V. Pierrard | M. Lazar | M. Lazar
[1] D. C. Hamilton,et al. Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.
[2] George Livadiotis,et al. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas , 2009 .
[3] C. Russell,et al. Mirror modes: Non-Maxwellian distributions , 2000, physics/0009040.
[4] M. Hellberg,et al. Electron-acoustic waves in the laboratory: an experiment revisited , 2000, Journal of Plasma Physics.
[5] A. Klimas,et al. Generation of Electron Suprathermal Tails in the Upper Solar Atmosphere: Implications for Coronal Heating , 2000 .
[6] R. Mace. Whistler instability enhanced by suprathermal electrons within the Earth's foreshock , 1998 .
[7] H. Garrett,et al. Comparison of spacecraft charging environments at the Earth, Jupiter, and Saturn , 1998 .
[8] Akira Kadokura,et al. Two‐dimensional numerical modeling of the cosmic ray storm , 1986 .
[9] J. Raymond,et al. Ultraviolet Emission-Line Intensities and Coronal Heating by Velocity Filtration: Collisionless Results , 1996 .
[10] Kappa-like distribution functions inside magnetic clouds , 2008 .
[11] M. Maksimović,et al. Self‐consistent model of solar wind electrons , 2001 .
[12] N. Pogorelov,et al. The Effects of a κ-Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU , 2008, 0803.2538.
[13] M. Hellberg,et al. The electron-acoustic mode in a plasma with hot suprathermal and cool Maxwellian electrons , 1999 .
[14] S. Landi,et al. On the temperature profile and heat flux in the solar corona: Kinetic simulations , 2001 .
[15] M. Maksimović,et al. Core, Halo and Strahl Electrons in the Solar Wind , 2001 .
[16] R. Lin,et al. Electron Halo and Strahl Formation in the Solar Wind by Resonant Interaction with Whistler Waves , 2005 .
[17] Kinetic Theoretical Foundation of Lorentzian Statistical Mechanics , 1998, physics/9807010.
[18] Daan Hubert,et al. Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .
[19] Qinghua Zhou,et al. Instability of whistler-mode waves by a relativistic kappa-loss-cone distribution in space plasmas , 2006 .
[20] R. Thorne,et al. Instability of electromagnetic R-mode waves in a relativistic plasma , 1998 .
[21] Ioannis Kourakis,et al. Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons , 2009 .
[22] Generalized-Lorentzian Thermodynamics , 1998, physics/9808037.
[23] K. Stegen,et al. A three‐dimensional dynamic kinetic model of the plasmasphere , 2008 .
[24] Y. Ralchenko,et al. Is There a High-Energy Particle Population in the Quiet Solar Corona? , 2007 .
[25] M. Leubner,et al. Mirror instability thresholds in suprathermal space plasmas , 2000 .
[26] R. Mace. Generalized electron Bernstein modes in a plasma with a kappa velocity distribution , 2004 .
[27] James A. Miller. Magnetohydrodynamic turbulence dissipation and stochastic proton acceleration in solar flares , 1991 .
[28] M. Collier. Are magnetospheric suprathermal particle distributions (κ functions) inconsistent with maximum entropy considerations , 2004 .
[29] C. Mitchell,et al. Ionospheric storm time dynamics as seen by GPS tomography and in situ spacecraft observations , 2008 .
[30] James A. Miller. Electron Acceleration in Solar Flares by Fast Mode Waves: Quasi-linear Theory and Pitch-Angle Scattering , 1997 .
[31] R. Thorne,et al. Landau damping in space plasmas , 1991 .
[32] Andrew J. Steffl,et al. Cassini UVIS observations of the Io plasma torus. II. Radial variations , 2004 .
[33] V. Vasyliūnas,et al. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .
[34] B. Basu. Low Frequency Electrostatic Waves in Weakly Inhomogeneous Magnetoplasma Modeled by Lorentzian (kappa) Distributions , 2008 .
[35] D. Decker,et al. Upgoing electrons produced in an electron‐proton‐hydrogen atom aurora , 1995 .
[36] Tang Lijun,et al. Proton Cyclotron Instability Threshold Condition of Suprathermal Protons by Kappa Distribution , 2007 .
[37] B. Basu. Hydromagnetic waves and instabilities in kappa distribution plasma , 2009 .
[38] J. Lemaire,et al. Fitting the AE-8 energy spectra with two maxwellian functions , 1996 .
[39] D. Summers,et al. Growth and damping of oblique electromagnetic ion cyclotron waves in the Earth's magnetosphere , 1996 .
[40] C. Farrugia,et al. A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections , 2003 .
[41] M. Collier. On generating Kappa‐like distribution functions using velocity space Lévy flights , 1993 .
[42] S. Poedts,et al. Counterstreaming magnetized plasmas with kappa distributions – I. Parallel wave propagation , 2008 .
[43] Richard L. Mace,et al. A dispersion function for plasmas containing superthermal particles , 1995 .
[44] R. P. Singhal,et al. Whistler-mode instability in magnetospheres of Uranus and Neptune , 2008 .
[45] R. Thorne,et al. A new tool for analyzing microinstabilities in space plasmas modeled by a generalized Lorentzian (Kappa) distribution , 1992 .
[46] V. Formisano,et al. Solar wind interaction with the Earth's magnetic field: 1. Magnetosheath , 1973 .
[47] M. Leubner,et al. A general kinetic mirror instability criterion for space applications , 2001 .
[48] G. Gloeckler,et al. Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS , 1996 .
[49] N. Meyer‐Vernet. Large scale structure of planetary environments: the importance of not being Maxwellian , 2001 .
[50] P. Riley,et al. Ulysses electron distributions fitted with Kappa functions , 1997 .
[51] M. Moncuquet,et al. Latitudinal structure of outer Io plasma torus , 2002 .
[52] J. Lemaire,et al. Lorentzian ion exosphere model , 1996 .
[53] M. Leubner,et al. A universal mirror wave-mode threshold condition for non-thermal space plasma environments , 2001 .
[54] M. Collier. The adiabatic transport of superthermal distributions modelled by Kappa Functions , 1995 .
[55] M. Karlický,et al. EUV filter responses to plasma emission for the nonthermal κ-distributions , 2009 .
[56] V. Hansteen,et al. Kinetic electrons in high-speed solar wind streams: Formation of high-energy tails , 1997 .
[57] Young-Dae Jung,et al. Coulomb Focusing Corrections on Bremsstrahlung Emission from Anisotropic bi-Lorentzian Distribution Plasmas , 2004 .
[58] R. Treumann. Statistical Mechanics of Stable States Far from Equilibrium: Thermodynamics of Turbulent Plasmas , 2001 .
[59] D. Summers,et al. Correction to “Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves” , 1999 .
[60] G. Gloeckler,et al. Acceleration and Composition of Solar Wind Suprathermal Tails , 2007 .
[61] S. Livi,et al. Coulomb collision rates for self-similar and kappa distributions. [For space plasmas] , 1985 .
[62] F. Keenan,et al. Evidence for Non-Maxwellian Electron Energy Distributions in the Solar Transition Region: Si III Line Ratios from SUMER , 1999 .
[63] G. Murtaza,et al. Some electrostatic modes based on non-Maxwellian distribution functions , 2004 .
[64] J. Scudder,et al. Electron heat flow carried by Kappa Distributions in the solar corona , 1999 .
[65] R. Thorne,et al. Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function , 1994 .
[66] I. Zouganelis. Measuring suprathermal electron parameters in space plasmas : Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind , 2008 .
[67] J. Lemaire,et al. Correction to “Lorentzian ion exosphere model” , 1998 .
[68] E. C. Shoub. Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I - Fokker-Planck results , 1983 .
[69] M. Maksimović,et al. Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses Observations , 2009 .
[70] S. Krimigis,et al. Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements , 2009 .
[71] R. F. Donnelly. Comparison of nonflare solar soft X ray flux with 10.7‐cm radio flux , 1982 .
[72] R. Mace. A DIELECTRIC TENSOR FOR MAGNETOPLASMAS COMPRISING COMPONENTS WITH GENERALIZED LORENTZIAN DISTRIBUTIONS , 1996 .
[73] Firenze,et al. Acceleration of Weakly Collisional Solar-Type Winds , 2005, astro-ph/0505324.
[74] G. Mann,et al. Formation of suprathermal electron distributions in the quiet solar corona , 2008 .
[75] T. Cattaert,et al. Oblique propagation of electromagnetic waves in a kappa-Maxwellian plasma , 2007 .
[76] Burton D. Fried,et al. The Plasma Dispersion Function , 1961 .
[77] M. P. Leubner,et al. A Nonextensive Entropy Approach to Solar Wind Intermittency , 2004, astro-ph/0409497.
[78] M. Karlický,et al. Kappa distribution and hard X-ray emission of solar flares , 2009, 0902.3574.
[79] H. Rosenbauer,et al. Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU , 1990 .
[80] N. Meyer‐Vernet,et al. Electrostatic noise in non‐Maxwellian plasmas: Generic properties and “kappa” distributions , 1991 .
[81] I. Dandouras,et al. Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .
[82] George Gloeckler,et al. The Common Spectrum for Accelerated Ions in the Quiet-Time Solar Wind , 2006 .
[83] H. Biernat,et al. Influence of κ-distributed ions on the two-stream instability , 2005 .
[84] V. Pierrard. New model of magnetospheric current‐voltage relationship , 1996 .
[85] G. Mann,et al. Generation of Suprathermal Electrons by Resonant Wave-Particle Interaction in the Solar Corona and Wind , 2003 .
[86] M. Leubner. Wave induced suprathermal tail generation of electron velocity space distributions , 2000 .
[87] A. Hundhausen,et al. SOLAR WIND ELECTRONS: VELA 4 MEASUREMENTS. , 1968 .
[88] H. Rosenbauer,et al. Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .
[89] W. I. Axford,et al. The Magnetosphere of Uranus: Hot Plasma and Radiation Environment , 1986, Science.
[90] A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.
[91] J. Scudder. Why all stars should possess circumstellar temperature inversions , 1992 .
[92] M. Leubner. Consequences of entropy bifurcation in non-Maxwellian astrophysical environments , 2008 .
[93] Edgar,et al. Reconciling Spectroscopic Electron Temperature Measurements in the Solar Corona with In Situ Charge State Observations , 2000, The Astrophysical journal.
[94] Richard M. Thorne,et al. The modified plasma dispersion function , 1991 .
[95] A. Hundhausen,et al. Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection , 1993 .
[96] G. Gloeckler,et al. AMPTE Ion Composition Results , 1987 .
[97] W. Feldman,et al. Interpenetrating solar wind streams. , 1974 .
[98] S. Poedts,et al. Counterstreaming magnetized plasmas with kappa distributions – II. Perpendicular wave propagation , 2010 .
[99] Constantino Tsallis,et al. Non-extensive thermostatistics: brief review and comments , 1995 .
[100] Louis J. Lanzerotti,et al. Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .
[101] M. Maksimović,et al. A Transonic Collisionless Model of the Solar Wind , 2004, astro-ph/0402358.
[102] T. H. Zerguini,et al. Alternative dust acoustic solitary waves in a plasma consisting of superthermal electrons and nonthermal ions having kappa-vortex-like velocity distribution function , 2009 .
[103] R. Treumann,et al. Electrostatic fluctuations in plasmas containing suprathermal particles , 1998, Journal of Plasma Physics.
[104] R. S. Pandey,et al. COLD PLASMA INJECTION ON VLF WAVE MODE FOR RELATIVISTIC MAGNETOPLASMA WITH A.C. ELECTRIC FIELD , 2008 .
[105] R. Treumann,et al. Stationary plasma states far from equilibrium , 2004 .
[106] R. Thorne,et al. Analytical solutions to the general problem of oblique wave growth and damping , 1986 .
[107] J. Podesta. Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons , 2008 .
[108] J. Lemaire,et al. Kinetic Models of Solar and Polar Winds , 1973 .
[109] T. Cattaert,et al. Effects of Superthermal Particles on Waves in Magnetized Space Plasmas , 2005 .
[110] J. Scudder,et al. On the causes of temperature change in inhomogeneous low-density astrophysical plasmas , 1992 .
[111] D. Ruffolo,et al. Ionization Fractions of Slow Ions in a Plasma with Kappa Distributions for the Electron Velocity , 2003 .
[112] D. Hamilton,et al. The relationship between kappa and temperature in energetic ion spectra at Jupiter , 1995 .
[113] V. Pierrard,et al. The Effects of the Velocity Filtration Mechanism on the Minor Ions of the Corona , 2003 .
[114] G. Gloeckler,et al. Anisotropic Beams of Energetic Particles Upstream from the Termination Shock of the Solar Wind , 2006 .
[115] B. Shizgal. Suprathermal particle distributions in space physics: Kappa distributions and entropy , 2007 .
[116] A. Magnus,et al. Formulas for recurrence coefficients of orthogonal polynomials related to Lorentzian-like weights , 2008 .
[117] D. Summers,et al. Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves , 1998, physics/9810049.
[118] Nathan A. Schwadron,et al. The suprathermal seed population for corotating interaction region ions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind , 2000 .
[119] M. Tribeche,et al. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution , 2008 .
[120] J. Scudder. Ion and electron suprathermal tail strengths in the transition region: Support for the velocity filtration model of the corona , 1994 .
[121] W. Feldman,et al. Solar wind electrons , 1975 .
[122] M. Moncuquet,et al. Temperature Inversion in the Io Plasma Torus , 1995 .
[123] A. Viñas,et al. Stability analysis of double‐peaked proton distribution functions in the solar wind , 1986 .
[124] M. Leubner. Fundamental issues on kappa-distributions in space plasmas , 2003 .
[125] H. Abbasi,et al. Adiabatic evolution of phase space electron–hole in plasmas with super-thermal electrons , 2008 .
[126] Herve Lamy,et al. A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for the protons , 2003 .
[127] M. Maksimović,et al. A kinetic model of the solar wind with Kappa distribution functions in the corona. , 1997 .
[128] M. Hellberg,et al. Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution , 2002 .
[129] J. Lemaire,et al. A Monte Carlo Simulation of the H+ Polar Wind: Effect of Velocity Distributions with Kappa Suprathermal Tails , 2001 .
[130] K. D. Misra,et al. Whistler Mode Instability in a Lorentzian (κ) Magnetoplasma in the Presence of Perpendicular A.C. Electric Field and Cold Plasma Injection , 2000 .
[131] M. Leubner. Core-Halo Distribution Functions: A Natural Equilibrium State in Generalized Thermostatistics , 2004 .
[132] F. Xiao,et al. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas , 2006 .
[133] J. Lemaire,et al. Exospheric distributions of minor ions in the solar wind , 2004 .
[134] M. Maksimović,et al. Quasi-thermal noise in space plasma: “kappa” distributions , 2009 .
[135] E. W. Hones,et al. Characteristics of the plasma sheet in the Earth's magnetotail , 1967 .
[136] R. Benson,et al. Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations , 2005 .
[137] I. Kourakis,et al. Comment on 'Mathematical and physical aspects of Kappa velocity distribution' [Phys. Plasmas 14, 110702 (2007)] , 2009 .
[138] S. Christon. A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .
[139] J. F. Mckenzie,et al. The solar wind ion composition spectrometer , 1992 .
[140] M. Maksimović,et al. Electron temperature anisotropy constraints in the solar wind , 2008 .
[141] Barry H. Mauk,et al. The magnetosphere of Neptune: Hot plasmas and energetic particles , 1991 .
[142] T. Eastman,et al. Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions , 1988 .
[143] R. Sagdeev,et al. Linear theory of the mirror instability in non‐Maxwellian space plasmas , 2002 .
[144] F. Xiao,et al. Energetic particles modeled by a generalized relativistic kappa-type distribution function in plasmas , 2008 .
[145] V. Pierrard. Kinetic models for the exospheres of Jupiter and Saturn , 2009 .
[146] J. Scudder,et al. Auroral source region: Plasma properties of the high-latitude plasma sheet , 2003 .
[147] Stefaan Poedts,et al. Firehose instability in space plasmas with bi-kappa distributions , 2009 .
[148] M. Leubner. On Jupiter's whistler emission , 1982 .
[149] Jianping Li,et al. Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970s , 2007 .
[150] R. Treumann. Theory of super‐diffusion for the magnetopause , 1997 .
[151] Roberto D'Agosta,et al. Electrostatic Landau pole for κ-velocity distributions , 2007 .
[152] R. Wiens,et al. Suprathermal electrons in high‐speed streams from coronal holes: Counterstreaming on open field lines at 1 AU , 2005 .
[153] Can Huang,et al. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions , 1989 .
[154] R. Mace. A Gordeyev integral for electrostatic waves in a magnetized plasma with a kappa velocity distribution , 2003 .
[155] J. Lemaire,et al. Exospheric model of the plasmasphere , 2001 .
[156] H. Rosenbauer,et al. Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment , 1987 .
[157] R. Thorne,et al. Electromagnetic ion‐cyclotron instability in space plasmas , 1993 .
[158] J. Scudder,et al. A THEORY OF LOCAL. AND GLOBAL PROCESSES WHICH AFFECT SOLAR WIND ELECTRONS , 2011 .
[159] Milan Maksimovic,et al. Electron velocity distribution functions from the solar wind to the corona , 1999 .
[160] D. Strobel,et al. Io's auroral limb glow: Hubble Space Telescope FUV observations , 2003 .
[161] J. Podesta. Spatial Landau damping in plasmas with three-dimensional κ distributions , 2005 .
[162] W. Feldman,et al. Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond ∼2 Au: Ulysses , 1993 .
[163] J. Geiss,et al. Limitations on suprathermal tails of electrons in the lower solar corona , 1996 .
[164] S. Nozawa,et al. Effects of a kappa distribution function of electrons on incoherent scatter spectra , 2000 .
[165] E. Dzifčáková. The Influence of the Electron κ-Distribution in the Solar Corona on the Fe VIII – Fe XV Line Intensities , 2006 .
[166] R. Thorne,et al. Parametric study of electromagnetic ion cyclotron instability in the Earth's magnetosphere , 1996 .
[167] R. Treumann,et al. Gibbsian theory of power-law distributions. , 2007, Physical review letters.
[168] N. Meyer‐Vernet. How does the solar wind blow? A simple kinetic model , 1999 .
[169] Hasegawa,et al. Plasma distribution function in a superthermal radiation field. , 1985, Physical review letters.
[170] M. Leubner. High‐energy tail distributions and resonant wave particle interaction , 1983 .
[171] P. Janhunen,et al. Field-aligned conductance values estimated from Maxwellian and kappa distributions in quiet and disturbed events using Freja electron data , 1998 .
[172] Louis J. Lanzerotti,et al. General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft , 1983 .