The splash/non-splash boundary upon a dry surface and thin fluid film

On the basis of empirical data, power-law boundary relations are formulated to delineate the splash and non-splash regions on dry surfaces or thin films under isothermal conditions, using the Ohnesorge and Reynolds numbers. Approximation of the relations permits cancellation of fundamental fluid physical constants to give simplified formulas which provide insight into the governing parameters describing splashing and non-splashing behaviors. Thus, for a droplet impinging upon a dry solid surface, the splash/non-splash border is well described by √Ca = 0.35. For a drop impinging upon a thin fluid film, the analytical simplification yields a boundary described by √We = 20. For both expressions, values greater than the numerical value result in splashing.

[1]  Andrea Prosperetti,et al.  Surface-tension effects in the contact of liquid surfaces , 1989, Journal of Fluid Mechanics.

[2]  C. Tropea,et al.  Evaluation of drop impingement models experimental and numerical analysis of a spray impact , 1999 .

[3]  N. Hatta,et al.  Deformation Process of a Water Droplet Impinging on a Solid Surface , 1995 .

[4]  A. Yarin,et al.  Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity , 1995, Journal of Fluid Mechanics.

[5]  A. Moriyama,et al.  Deformation Behaviors of a Liquid Droplet Impinging onto Hot Metal Surface , 1980 .

[6]  Dimos Poulikakos,et al.  Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—II. Experiments , 1996 .

[7]  Yannis Hardalupas,et al.  Experimental investigation of sub-millimetre droplet impingement on to spherical surfaces , 1999 .

[8]  Marco Marengo,et al.  IMPACT OF A SINGLE DROP ON A LIQUID FILM: EXPERIMENTAL ANALYSIS AND COMPARISON WITH EMPIRICAL MODELS , 1999 .

[9]  K. Leong,et al.  Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces , 2002 .

[10]  O. G. Engel Initial Pressure, Initial Flow Velocity, and the Time Dependence of Crater Depth in Fluid Impacts , 1967 .

[11]  C. Avedisian,et al.  On the collision of a droplet with a solid surface , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Lorenz Sigurdson,et al.  The three-dimensional vortex structure of an impacting water drop , 1994 .

[13]  Y. K. Cai,et al.  Phenomena of a liquid drop falling to a liquid surface , 1989 .

[14]  K. Wong,et al.  RETRACTION PHENOMENA OF SURFACTANT SOLUTION DROPS UPON IMPACT ON A SOLID SUBSTRATE OF LOW SURFACE ENERGY , 1999 .

[15]  Zhang,et al.  Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface , 1997, Journal of colloid and interface science.

[16]  F. Feuillebois,et al.  Influence of Surface Roughness on Liquid Drop Impact , 1998 .

[17]  Zi Niu Wu Modelisation et calcul implicite multidomaine d'ecoulements diphasiques gaz-gouttelettes , 1992 .

[18]  C. Stow,et al.  The Physical Products of a Splashing Water Drop , 1977 .

[19]  Z. N. Wu Approximate critical Weber number for the breakup of an expanding torus , 2003 .

[20]  P. Hobbs,et al.  Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation , 1971, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  D. Bousfield,et al.  Newtonian drop impact with a solid surface , 1995 .

[22]  Honghi Tran,et al.  Spread and rebound of liquid droplets upon impact on flat surfaces , 1997 .

[23]  Martin Rieber,et al.  A numerical study on the mechanism of splashing , 1999 .

[24]  M. Rein,et al.  The transitional regime between coalescing and splashing drops , 1996, Journal of Fluid Mechanics.

[25]  Markus Bussmann,et al.  Modeling the splash of a droplet impacting a solid surface , 2000 .

[26]  C. Tropea,et al.  Outcomes from a drop impact on solid surfaces , 2001 .

[27]  Andrea Prosperetti,et al.  Transient impact of a liquid column on a miscible liquid surface , 2003 .

[28]  C. Tropea,et al.  Droplet-wall collisions: Experimental studies of the deformation and breakup process , 1995 .

[29]  C. Stow,et al.  An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Thomas A. McMahon,et al.  The tuning of a splash , 1990 .

[31]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[32]  M. Pasandideh-Fard,et al.  Capillary effects during droplet impact on a solid surface , 1996 .

[33]  John D. Bernardin,et al.  Mapping of impact and heat transfer regimes of water drops impinging on a polished surface , 1997 .

[34]  Gordon M. Berger,et al.  Droplets splashing upon films of the same fluid of various depths , 2006 .

[35]  P. Hobbs,et al.  Splashing of a Water Drop , 1967, Science.

[36]  Ho-Young Kim,et al.  Imaging the high-speed impact of microdrop on solid surface , 2003 .

[37]  P. Hobbs,et al.  Splashing of Drops on Shallow Liquids , 1967, Science.

[38]  M. Marengo,et al.  The impact of a single drop on a wetted solid surface , 1997 .

[39]  Kohsei Takehara,et al.  The coalescence cascade of a drop , 2000 .

[40]  S. Chung,et al.  An experiment on the breakup of impinging droplets on a hot surface , 1996 .

[41]  B. Kang,et al.  On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface , 2000 .

[42]  S. Thoroddsen,et al.  Evolution of the fingering pattern of an impacting drop , 1998 .

[43]  D. V. Boger,et al.  Influence of fluid elasticity on drops impacting on dry surfaces , 2000 .

[44]  Marco Marengo,et al.  Time evolution of liquid drop impact onto solid, dry surfaces , 2002 .

[45]  A. Rozhkov,et al.  Impact of water drops on small targets , 2002 .

[46]  R. F. Allen,et al.  The role of surface tension in splashing , 1975 .

[47]  R. Rioboo,et al.  Experimental investigation of splash and crown formation during single drop impact on wetted surfaces , 2003 .

[48]  B. Prunet-Foch,et al.  Impacting Emulsion Drop on a Steel Plate: Influence of the Solid Substrate☆ , 1998 .

[49]  Cameron Tropea,et al.  Impact of a drop onto a wetted wall: description of crown formation and propagation , 2002, Journal of Fluid Mechanics.

[50]  Vijay K. Dhir,et al.  Shape of a vapor stem during nucleate boiling of saturated liquids , 1995 .

[51]  B. R. Morton,et al.  Drop‐formed vortex rings—The generation of vorticity , 1995 .

[52]  An-Bang Wang,et al.  Splashing impact of a single drop onto very thin liquid films , 2000 .

[53]  Z. C. Feng,et al.  Instability of a liquid jet emerging from a droplet upon collision with a solid surface , 2000 .

[54]  Mourougou-Candoni,et al.  Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate , 1997, Journal of colloid and interface science.

[55]  A. Frohn,et al.  Experimental investigation of interaction processes between droplets and hot walls , 2000 .

[56]  Paul Elmore,et al.  The entrainment of bubbles by drop impacts , 1990, Journal of Fluid Mechanics.

[57]  Mario F. Trujillo,et al.  Modeling crown formation due to the splashing of a droplet , 2001 .

[58]  Cameron Tropea,et al.  Splashing impact of a spray onto a liquid film , 2002 .