Neural Network Applications to Solve Forward and Inverse Problems in Atmospheric and Oceanic Satellite Remote Sensing

Vladimir M. Krasnopolsky (*) Science Application International Company at Environmental Modeling Center, National Centers for Environmental Prediction, National Oceanic and Atmospheric Administration, Camp Springs, Maryland, USA Earth System Science Interdisciplinary Center, University of Maryland, EMC/NCEP/NOAA, 5200 Auth Rd., Camp Springs, MD 20746, USA Phone: 301-763-8000 ext. 7262; fax 301-763-8545; email: vladimir.krasnopolsky@noaa.gov also presented in Chapter 10 by G. Yung. These applications and those that we discuss in Chapter 11, from the mathematical point of view, belong to the broad class of applications called approximation of mappings. A particular type of the NN, a Multi-Layer Perceptron (MLP) NN (Rumelhart et al. 1986) is usually employed to approximate mappings. We will start by introducing a remote sensing, mapping, and NN background.

[1]  Roland Doerffer,et al.  Neural network for emulation of an inverse model: operational derivation of Case II water properties from MERIS data , 1999 .

[2]  S. A. Snyder,et al.  Determination of oceanic total precipitable water from the SSM/I , 1990 .

[3]  Kamal Sarabandi,et al.  Application of an artificial neural network in canopy scattering inversion , 1994 .

[4]  Grant W. Petty,et al.  The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures , 1992 .

[5]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[6]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[7]  V. M. Krasnopolsky,et al.  A multi-parameter empirical ocean algorithm for SSM/I retrievals , 1999 .

[8]  Lei Meng,et al.  Neural network retrieval of ocean surface parameters from SSM/I data , 2007 .

[9]  David H. Staelin,et al.  Passive microwave relative humidity retrievals using feedforward neural networks , 1995, IEEE Trans. Geosci. Remote. Sens..

[10]  Helmut Schiller,et al.  Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements , 2003, Neural Networks.

[11]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[12]  John P. Burrows,et al.  Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)) , 2003 .

[13]  Gilles Pagès,et al.  Approximations of Functions by a Multilayer Perceptron: a New Approach , 1997, Neural Networks.

[14]  L. Phalippou,et al.  Variational Inversion of the SSM/I Observations during the ASTEX Campaign , 1997 .

[15]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[16]  Jenq-Neng Hwang,et al.  Solving inverse problems by Bayesian iterative inversion of a forward model with applications to parameter mapping using SMMR remote sensing data , 1995, IEEE Trans. Geosci. Remote. Sens..

[17]  A. Strahler,et al.  Forward and inverse modelling of canopy directional reflectance using a neural network , 1998 .

[18]  John Derber,et al.  The use of TOVS level‐1b radiances in the NCEP SSI analysis system , 2000 .

[19]  L. Phalippou,et al.  Variational retrieval of humidity profile, wind speed and cloud liquid‐water path with the SSM/I: Potential for numerical weather prediction , 1996 .

[20]  Hong Chen,et al.  Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks , 1993, IEEE Trans. Neural Networks.

[21]  Vladimir M. Krasnopolsky,et al.  Domain check for input to NN emulating an inverse model , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[22]  V. Krasnopolsky,et al.  A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager , 1995 .

[23]  S. Thiria,et al.  A neural network approach for modeling nonlinear transfer functions: Application for wind retrieval from spaceborne scatterometer data , 1993 .

[24]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[25]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[26]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[27]  Vladimir M. Krasnopolsky Reducing Uncertainties in Neural Network Jacobians and Improving Accuracy of Neural Network Emulations with NN Ensemble Approaches , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[28]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[29]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[30]  F. Weng,et al.  Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I) , 1994 .

[31]  David L. T. Anderson,et al.  Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4 , 1997 .

[32]  I. Nabney,et al.  Improved neural network scatterometer forward models , 2001 .

[33]  Robert J. Marks,et al.  Inversion Of Snow Parameters From Passive Microwave Remote Sensing Measurements By A Neural Network Trained With A Multiple Scattering Model , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[34]  Grant W. Petty,et al.  The response of the SSM/I to the marine environment. Part 2: A parameterization of the effect of the sea surface slope distribution on emission and reflection , 1994 .

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[37]  Filipe Aires,et al.  Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 3. Network Jacobians , 2004 .

[38]  Vladimir M. Krasnopolsky Reducing Uncertainties in Neural Network Jacobians and Improving Accuracy of Neural Network Emulations with NN Ensemble Approaches , 2006, IJCNN.

[39]  Mark A. Goodberlet,et al.  Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions , 1992, IEEE Trans. Geosci. Remote. Sens..

[40]  Vladimir M. Krasnopolsky,et al.  A Neural Network Multiparameter Algorithm for SSM/I Ocean Retrievals , 2000 .

[41]  Filipe Aires,et al.  Remote sensing from the infrared atmospheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles , 2002 .

[42]  M. A. Goodberlet,et al.  Remote sensing of ocean surface winds with the special sensor microwave/imager , 1989 .

[43]  C. T. Butler,et al.  Ocean surface wind retrievals from special sensor microwave imager data with neural networks , 1994 .

[44]  A. Mcnally,et al.  Direct use of satellite sounding radiances in numerical weather prediction , 1993 .

[45]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[46]  Hong Chen,et al.  Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems , 1995, IEEE Trans. Neural Networks.

[47]  R. Parker Geophysical Inverse Theory , 1994 .

[48]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[49]  James A. Smith,et al.  LAI inversion using a back-propagation neural network trained with a multiple scattering model , 1993, IEEE Trans. Geosci. Remote. Sens..