Retinal Disease Screening Through Local Binary Patterns

This paper investigates discrimination capabilities in the texture of fundus images to differentiate between pathological and healthy images. For this purpose, the performance of local binary patterns (LBP) as a texture descriptor for retinal images has been explored and compared with other descriptors such as LBP filtering and local phase quantization. The goal is to distinguish between diabetic retinopathy (DR), age-related macular degeneration (AMD), and normal fundus images analyzing the texture of the retina background and avoiding a previous lesion segmentation stage. Five experiments (separating DR from normal, AMD from normal, pathological from normal, DR from AMD, and the three different classes) were designed and validated with the proposed procedure obtaining promising results. For each experiment, several classifiers were tested. An average sensitivity and specificity higher than 0.86 in all the cases and almost of 1 and 0.99, respectively, for AMD detection were achieved. These results suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in a diagnosis aid system for retinal disease screening.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Farida Cheriet,et al.  Automatic multiresolution age-related macular degeneration detection from fundus images , 2014, Medical Imaging.

[3]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[4]  Haizhou Ai,et al.  Demographic Classification with Local Binary Patterns , 2007, ICB.

[5]  S. Dudoit,et al.  Asymptotics of cross-validated risk estimation in estimator selection and performance assessment , 2005 .

[6]  Guy Cazuguel,et al.  TeleOphta: Machine learning and image processing methods for teleophthalmology , 2013 .

[7]  Moncef Gabbouj,et al.  Noise-Robust Texture Description Using Local Contrast Patterns via Global Measures , 2014, IEEE Signal Processing Letters.

[8]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[9]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Augustinus Laude,et al.  An Integrated Diabetic Retinopathy Index for the Diagnosis of Retinopathy Using Digital Fundus Image Features , 2013 .

[11]  U. Rajendra Acharya,et al.  Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach , 2013, Knowl. Based Syst..

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  L. Nanni,et al.  Non-Binary Coding for Texture Descriptors in Sub-Cellular and Stem Cell Image Classification , 2013 .

[14]  Matti Pietikäinen,et al.  A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification , 2001, ICAPR.

[15]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[16]  Emanuele Menegatti,et al.  Different Approaches for Extracting Information from the Co-Occurrence Matrix , 2013, PloS one.

[17]  Frans Coenen,et al.  Automated "disease/no disease" grading of age-related macular degeneration by an image mining approach. , 2012, Investigative ophthalmology & visual science.

[18]  S. R. Dhanushkodi,et al.  Diagnosis System for Diabetic Retinopathy to Prevent Vision Loss , 2013 .

[19]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[20]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[21]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[22]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[24]  Hamid Reza Pourreza,et al.  Retinal vessel segmentation using color image morphology and local binary patterns , 2010, 2010 6th Iranian Conference on Machine Vision and Image Processing.

[25]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Loris Nanni,et al.  Local binary patterns variants as texture descriptors for medical image analysis , 2010, Artif. Intell. Medicine.

[27]  Kevin Noronha,et al.  Local configuration pattern features for age-related macular degeneration characterization and classification , 2015, Comput. Biol. Medicine.

[28]  Guy Cazuguel,et al.  Spatial normalization of eye fundus images , 2012, ISBI 2012.

[29]  Mariano Alcañiz Raya,et al.  Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology , 2013, IEEE Transactions on Medical Imaging.

[30]  Sushma G. Thorat Locating the Optic Nerve in a Retinal Image Using the Fuzzy Convergence of the Blood Vessels , 2014 .

[31]  Mariano Alcañiz Raya,et al.  Segmentation and Analysis of Retinal Vascular Tree from Fundus Images Processing , 2012, BIOSIGNALS.

[32]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[33]  Tobias Scheffer,et al.  Error Estimation and Model Selection , 1999, Künstliche Intell..

[34]  T. Eftestøl,et al.  Using local binary pattern to classify dementia in MRI , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[35]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[36]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[37]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[38]  Simon P. Harding,et al.  Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators , 2008, J. Frankl. Inst..

[39]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[40]  Aggelos K. Katsaggelos,et al.  Local Binary Patterns used on Cardiac MRI to classify high and low risk patient groups , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[41]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[42]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.