“Water-free” computer model for fluid bilayer membranes

We use a simple and efficient computer model to investigate the physical properties of bilayer membranes. The amphiphilic molecules are modeled as short rigid trimers with finite range pair interactions between them. The pair potentials have been designed to mimic the hydrophobic interactions, and to allow the simulation of the membranes without the embedding solvent as if the membrane is in vacuum. We find that upon decreasing the area density of the molecules the membrane undergoes a solid–fluid phase transition, where in the fluid phase the molecules can diffuse within the membrane plane. The surface tension and the bending modulus of the fluid membranes are extracted from the analysis of the spectrum of thermal undulations. At low area densities we observe the formation of pores in the membrane through which molecules can diffuse from one layer to the other. The appearance of the pores is explained using a simple model relating it to the area dependence of the free energy.

[1]  J. Schulman,et al.  FORMATION OF MICROEMULSIONS BY AMINO ALKYL ALCOHOLS , 1961, Annals of the New York Academy of Sciences.

[2]  J. S. Rowlinson,et al.  Phase Transitions and Critical Phenomena , 1972 .

[3]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[4]  J. Litster,et al.  Stability of lipid bilayers and red blood cell membranes , 1975 .

[5]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[6]  P. G. de Gennes,et al.  Microemulsions and the flexibility of oil/water interfaces , 1982 .

[7]  J. Israelachvili Intermolecular and surface forces , 1985 .

[8]  L. Peliti,et al.  Effects of thermal fluctuations on systems with small surface tension. , 1985, Physical review letters.

[9]  H. Engelhardt,et al.  Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles. , 1986, Faraday discussions of the Chemical Society.

[10]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[11]  W. Gelbart,et al.  Molecular theory of curvature elasticity in surfactant films , 1990 .

[12]  M. Bloom,et al.  Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective , 1991, Quarterly Reviews of Biophysics.

[13]  A C Maggs,et al.  Computer simulations of self-assembled membranes. , 1991, Science.

[14]  S. Leibler,et al.  Vanishing tension of fluctuating membranes , 1991 .

[15]  Peter A. J. Hilbers,et al.  Structure of a water/oil interface in the presence of micelles: A computer simulation study , 1991 .

[16]  R. Lipowsky,et al.  Hydration vs. Protrusion Forces Between Lipid Bilayers , 1993 .

[17]  Terry R. Stouch,et al.  Computer simulation of a phospholipid monolayer‐water system: The influence of long range forces on water structure and dynamics , 1993 .

[18]  K. Schulten,et al.  Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase , 1993 .

[19]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[20]  Gerhard Gompper,et al.  Self-assembling amphiphilic systems , 1995 .

[21]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[22]  J. Shillcock,et al.  Entropy-driven instability and rupture of fluid membranes. , 1996, Biophysical journal.

[23]  Netz,et al.  Pore formation and rupture in fluid bilayers. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  M. Schick,et al.  Structure and nucleation of pores in polymeric bilayers: A Monte Carlo simulation , 1996 .

[25]  U. Seifert,et al.  Thermal shape fluctuations of fluid-phase phospholipid-bilayer membranes and vesicles , 1997 .

[26]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[27]  P. Sens,et al.  Pore formation and area exchange in tense membranes , 1998 .

[28]  P. Tarazona,et al.  Elastic constants from a microscopic model of bilayer membrane , 1998 .

[29]  John C. Shelley,et al.  Computer simulation of surfactant solutions , 2000 .

[30]  E. Lindahl,et al.  Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations , 2000 .

[31]  A simple atomistic model for the simulation of the gel phase of lipid bilayers , 2001, physics/0104052.

[32]  Alan E. Mark,et al.  Effect of Undulations on Surface Tension in Simulated Bilayers , 2001 .

[33]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self defence? , 2001, Biochemical Society transactions.

[34]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[35]  M. Schick,et al.  New mechanism of membrane fusion , 2001, cond-mat/0110207.

[36]  M. Klein,et al.  Computer simulation studies of biomembranes using a coarse grain model , 2002 .

[37]  S. Hyodo,et al.  Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules , 2002 .

[38]  H. Noguchi Fusion and toroidal formation of vesicles by mechanical forces: A Brownian dynamics simulation , 2002 .

[39]  David R. Nelson,et al.  Statistical mechanics of membranes and surfaces , 2004 .