Stationary Fuzzy Fokker–Planck Learning and Stochastic Fuzzy Filtering

The application of nonlinear optimization to the estimation of fuzzy model parameters is well known. To do the reverse of this, the concept of stationary fuzzy Fokker-Planck learning (SFFPL) is introduced, i.e., SFFPL applies the fuzzy modeling technique in nonlinear optimization problems. SFFPL is based on the fuzzy approximation of the stationary cumulative distribution function of a stochastic search process associated with the nonlinear optimization problem. A carefully designed algorithm is suggested for SFFPL to locate the optimum point. This paper also considers the variational Bayes (VB)-based inference of a stochastic fuzzy filter whose consequents, as well as antecedents, are random variables. The problem of VB inference of stochastic antecedents, because of the nonlinearity of the likelihood function, is analytically intractable. The SFFPL algorithm for high-dimensional nonlinear optimization that does not require the derivative of the objective function can be used to numerically solve the stochastic fuzzy filtering problem.

[1]  Jacek M. Leski,et al.  TSK-fuzzy modeling based on /spl epsiv/-insensitive learning , 2005, IEEE Transactions on Fuzzy Systems.

[2]  Norbert Stoll,et al.  Robust Solution to Fuzzy Identification Problem with Uncertain Data by Regularization , 2004, Fuzzy Optim. Decis. Mak..

[3]  Norbert Stoll,et al.  On the Estimation of Parameters of Takagi–Sugeno Fuzzy Filters , 2009, IEEE Transactions on Fuzzy Systems.

[4]  Berç Rustem,et al.  Linearly Constrained Global Optimization and Stochastic Differential Equations , 2006, J. Glob. Optim..

[5]  Marco Sciandrone,et al.  On the Global Convergence of Derivative-Free Methods for Unconstrained Optimization , 2002, SIAM J. Optim..

[6]  Norbert Stoll,et al.  Fuzzy Handling of Uncertainties in Modeling the Inhibition of Glycogen Synthase Kinase-3 by Paullones , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[7]  Dan Simon,et al.  Training fuzzy systems with the extended Kalman filter , 2002, Fuzzy Sets Syst..

[8]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[9]  Norbert Stoll,et al.  A fuzzy system for modeling the structure-activity relationships in presence of uncertainties , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[10]  S. Mitter,et al.  RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL OPTIMIZATION IN , 2022 .

[11]  Norbert Stoll,et al.  Adaptive Fuzzy Filtering in a Deterministic Setting , 2009, IEEE Transactions on Fuzzy Systems.

[12]  Matthias Weippert,et al.  Fuzzy Evaluation of Heart Rate Signals for Mental Stress Assessment , 2007, IEEE Transactions on Fuzzy Systems.

[13]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[14]  Norbert Stoll,et al.  Fuzzy Filtering for an Intelligent Interpretation of Medical Data , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[15]  Kerstin Thurow,et al.  Fuzzy filtering for robust bioconcentration factor modelling , 2009, Environ. Model. Softw..

[16]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[17]  Chi-Hsu Wang,et al.  Function approximation using fuzzy neural networks with robust learning algorithm , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Johan A. K. Suykens,et al.  On-Line Learning Fokker-Planck Machine , 1998, Neural Processing Letters.

[19]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[20]  Norbert Stoll,et al.  Robust Adaptive Identification of Fuzzy Systems with Uncertain Data , 2004, Fuzzy Optim. Decis. Mak..

[21]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[22]  Norbert Stoll,et al.  Robust Adaptive Fuzzy Identification of Time-Varying Processes with Uncertain Data. Handling Uncertainties in the Physical Fitness Fuzzy Approximation with Real World Medical Data: An Application , 2003, Fuzzy Optim. Decis. Mak..

[23]  Matthias Weippert,et al.  A fuzzy filtering based system for maximal oxygen uptake prediction using heart rate variability analysis , 2009, 2009 IEEE International Conference on Automation Science and Engineering.

[24]  Norbert Stoll,et al.  A min-max approach to fuzzy clustering, estimation, and identification , 2006, IEEE Transactions on Fuzzy Systems.

[25]  Dan Simon,et al.  Design and rule base reduction of a fuzzy filter for the estimation of motor currents , 2000, Int. J. Approx. Reason..

[26]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Song-Shyong Chen,et al.  Robust TSK fuzzy modeling for function approximation with outliers , 2001, IEEE Trans. Fuzzy Syst..

[28]  Ling Wang,et al.  Fuzzy rule-based support vector regression system , 2005 .

[29]  Berç Rustem,et al.  Convergence analysis of a global optimization algorithm using stochastic differential equations , 2009, J. Glob. Optim..

[30]  Chin-Teng Lin,et al.  Fuzzy neural network design using support vector regression for function approximation with outliers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[31]  K. Thurow,et al.  Robust fuzzy mappings for QSAR studies. , 2007, European journal of medicinal chemistry.

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  Xia Hong,et al.  Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Martin Burger,et al.  Regularized data-driven construction of fuzzy controllers , 2002 .

[35]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[36]  Arturo Berrones,et al.  Stationary probability density of stochastic search processes in global optimization , 2007, ArXiv.

[37]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[38]  Chia-Feng Juang,et al.  TS-fuzzy system-based support vector regression , 2009, Fuzzy Sets Syst..

[39]  Raúl Pérez,et al.  Completeness and consistency conditions for learning fuzzy rules , 1998, Fuzzy Sets Syst..

[40]  Matthias Weippert,et al.  A mixture of fuzzy filters applied to the analysis of heartbeat intervals , 2010, Fuzzy Optim. Decis. Mak..

[41]  Norbert Stoll,et al.  Fuzzy Techniques for Subjective Workload-Score Modeling Under Uncertainties , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  S Kumar,et al.  Handling uncertainties in toxicity modelling using a fuzzy filter , 2007, SAR and QSAR in environmental research.

[43]  N. Stoll,et al.  Deterministic approach to robust adaptive learning of fuzzy models , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Xiaoou Li,et al.  Fuzzy identification using fuzzy neural networks with stable learning algorithms , 2004, IEEE Transactions on Fuzzy Systems.

[45]  Norbert Stoll,et al.  A robust design criterion for interpretable fuzzy models with uncertain data , 2006, IEEE Transactions on Fuzzy Systems.

[46]  S. Mitter,et al.  Metropolis-type annealing algorithms for global optimization in R d , 1993 .

[47]  Stephen P. Boyd,et al.  Fuzzy Filtering for Physiological Signal Analysis , 2010 .

[48]  T. A. Johansen,et al.  Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[49]  W. Wang,et al.  An Evolving Fuzzy Predictor for Industrial Applications , 2008, IEEE Transactions on Fuzzy Systems.

[50]  J. J. Shann,et al.  A fuzzy neural network for rule acquiring on fuzzy control systems , 1995 .

[51]  Norbert Stoll,et al.  An energy-gain bounding approach to robust fuzzy identification , 2006, Autom..

[52]  H. W. ENGLz Regularized Data-Driven Construction of Fuzzy Controllers , 2002 .

[53]  Arturo Berrones,et al.  Characterization of the convergence of stationary Fokker-Planck learning , 2008, Neurocomputing.

[54]  Chin-Teng Lin,et al.  Efficient Self-Evolving Evolutionary Learning for Neurofuzzy Inference Systems , 2008, IEEE Transactions on Fuzzy Systems.

[55]  Sangchul Won,et al.  A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism , 2006, IEEE Transactions on Fuzzy Systems.

[56]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[57]  Norbert Stoll,et al.  Variational Bayes for a Mixed Stochastic/Deterministic Fuzzy Filter , 2010, IEEE Transactions on Fuzzy Systems.