Transparent conducting silver nanowire networks.

We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and a pitch of 500, 700, and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 Ω/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations, we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For the latter, we discuss the general design principles to use the nanowire electrodes also as a light trapping scheme.

[1]  A. Polman,et al.  Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate. , 2011, Optics express.

[2]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[3]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[4]  Alberto Piqué,et al.  Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices , 1999 .

[5]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[6]  W. Leung,et al.  A New Architecture for Transparent Electrodes: Relieving the Trade‐Off Between Electrical Conductivity and Optical Transmittance , 2011, Advanced materials.

[7]  A. Polman,et al.  Optical impedance matching using coupled plasmonic nanoparticle arrays. , 2011, Nano letters.

[8]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[9]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.

[10]  Frederik S. F. Morgenstern,et al.  Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells , 2011 .

[11]  J. V. Coe,et al.  Extraordinary transmission of metal films with arrays of subwavelength holes. , 2008, Annual review of physical chemistry.

[12]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[13]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .

[14]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[15]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[16]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[17]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[18]  Jinghua Teng,et al.  Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. , 2010, ACS nano.

[19]  H. Rost,et al.  Roll-to-roll production of transparent conductive films using metallic grids , 2011 .

[20]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[21]  Yi Cui,et al.  Metal nanogrids, nanowires, and nanofibers for transparent electrodes , 2011 .

[22]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[23]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[24]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[25]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[26]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[27]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[28]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[29]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[30]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[31]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[32]  L. Jay Guo,et al.  Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light‐Emitting Diodes , 2007 .

[33]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[34]  P. Charbonneau,et al.  The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. , 2012, Nanoscale.

[35]  K. Masunaga,et al.  Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles , 2011 .

[36]  Marc A. Verschuuren,et al.  3D Photonic Structures by Sol-Gel Imprint Lithography , 2007 .