A class of Steiner triple systems of order 21 and associated Kirkman systems
暂无分享,去创建一个
[1] Chung Je CHO. Rotational Steiner triple systems , 1982, Discret. Math..
[2] R.H.F. Denniston. Non-Isomorphic Reverse Steiner Triple Systems of Order 19 , 1980 .
[3] Kevin T. Phelps,et al. Steiner triple systems with rotational automorphisms , 1981, Discret. Math..
[4] Alexander Rosa,et al. Room Squares Generalized , 1980 .
[5] Scott A. Vanstone,et al. On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays , 1980, Discret. Math..
[6] W. Ahrens,et al. Mathematische Unterhaltungen und Spiele , 2009 .
[7] W. W. Ball,et al. Mathematical Recreations and Essays , 1905, Nature.
[8] M. Colbourn,et al. On Cyclic Steiner 2-Designs , 1980 .
[9] László Babai. Almost All Steiner Triple Systems Are Asymmetric , 1980 .
[10] Alexander Rosa. GENERALIZED HOWELL DESIGNS , 1979 .
[11] Richard M. Wilson,et al. Nonisomorphic Steiner triple systems , 1974 .
[12] Alexander Rosa,et al. Topics on Steiner systems , 1980 .