Competing topological superconducting phases in FeSe$_{0.45}$Te$_{0.55}$

We demonstrate that recent angle-resolved photo-emission spectroscopy experiments provide strong evidence for the existence of two competing topological superconducting phases in FeSe$_{0.45}$Te$_{0.55}$. The coupling of their underlying microscopic mechanisms -- one based on a three-dimensional topological insulator, one based on two-dimensional superconductivity -- stabilizes topological superconductivity over a wide range of parameters, and gives rise to two disjoint topological regions in the phase diagram of FeSe$_{0.45}$Te$_{0.55}$. We show that the topological origin of these regions can be identified by considering the form of Majorana edge modes at domain walls.

[1]  Congjun Wu,et al.  Strong Correlation Between Superconductivity and Ferromagnetism in an Fe-Chalcogenide Superconductor. , 2021, Nano letters.

[2]  Peter D. Johnson,et al.  Electronic properties of the bulk and surface states of Fe1+yTe1−xSex , 2021, Nature Materials.

[3]  Andreas Kreisel,et al.  On the Remarkable Superconductivity of FeSe and Its Close Cousins , 2020, Symmetry.

[4]  Chaoxing Liu,et al.  Topological orders competing for the Dirac surface state in FeSeTe surfaces , 2020, 2004.13068.

[5]  Congjun Wu,et al.  Time Reversal Symmetry Breaking in the Fe-Chalcogenide Superconductors , 2019, 1907.11602.

[6]  S. Du,et al.  Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor , 2019, Science.

[7]  M. Weinert,et al.  Interplay of paramagnetism and topology in the Fe-chalcogenide high- Tc superconductors , 2019, Physical Review B.

[8]  G. Gu,et al.  Evidence for dispersing 1D Majorana channels in an iron-based superconductor , 2019, Science.

[9]  S. Du,et al.  Half-integer level shift of vortex bound states in an iron-based superconductor , 2019, Nature Physics.

[10]  S. Du,et al.  Evidence for Majorana bound states in an iron-based superconductor , 2017, Science.

[11]  Shik Shin,et al.  Observation of topological superconductivity on the surface of an iron-based superconductor , 2017, Science.

[12]  M. Vojta,et al.  Quantized charge transport in chiral Majorana edge modes , 2017, 1705.05378.

[13]  Timur K. Kim,et al.  Evidence for unidirectional nematic bond ordering in FeSe , 2016, 1603.04545.

[14]  Xiao-Liang Qi,et al.  Topological Superconductivity on the Surface of Fe-Based Superconductors. , 2015, Physical review letters.

[15]  Xi Dai,et al.  Topological nature of FeSe$_{0.5}$Te$_{0.5}$ superconductor , 2015, 1506.06766.

[16]  A. Schofield,et al.  Emergence of the nematic electronic state in FeSe , 2015, 1502.02917.

[17]  Jiangping Hu,et al.  Topological Characters in Fe(Te$_{1-x}$Se$_x$) thin films , 2014, 1412.3375.

[18]  Timur K. Kim,et al.  Direct observation of spin–orbit coupling in iron-based superconductors , 2014, Nature Physics.

[19]  Holger Fehske,et al.  Fate of topological-insulator surface states under strong disorder , 2012, 1203.2628.

[20]  J. Sobota,et al.  Angle-Resolved Photoemission Studies of Quantum Materials , 2012 .

[21]  K. Koepernik,et al.  Tight-binding models for the iron-based superconductors , 2009, 0905.4844.

[22]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[23]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[24]  H. Eisaki,et al.  Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ , 2002, Science.

[25]  Ka Ho Wong,et al.  Shot-noise and differential conductance as signatures of putative topological superconductivity in FeSe0.45Te0.55 , 2021, 2110.02238.

[26]  S. Rachel,et al.  Origin of Topological Surface Superconductivity in FeSe0.45Te0.55 , 2021 .