Validation analysis of the thermal and radiometric integrity of RIT's synthetic image generation model, DIRSIG

The digital imaging and remote sensing laboratory's image generation model (DIRSIG) was validated in the long wave infrared (LWIR, 8 - 13.3 micrometers ) and midwife infrared (MWIR, 3 - 5 micrometers ) pass bands. Truth data was collected for all components of the thermal and radiometric submodels including a complete set of meteorological and radiometric data. Truth temperatures were collected using a bank of thermistors and truth radiance images were collected with calibrated InSb (MWIR) and HgCdTe (LWIR) detectors. Sensor spectral response functions were also included in the radiometric analysis. Relative error contributions to the total temperature/radiance digital count were investigated for each component in the multi-spectral model. Largest contributions were found to be wind speed, air temperature, visible emissivity, and fractional sky exposure for the thermal model and atmospheric transmission, temperature, and emissivity for the radiance model. An overall comparison of truth and synthetic images yields rms errors of as low as 1.8 degree(s)C actual temperature and 5 degree(s)C (LWIR) and 6 degree(s)C (MWIR) apparent temperature.