Kinetic Studies of the Solvolyses of 2,2,2-Trichloro-1,1-Dimethylethyl Chloroformate

†The rate constants of solvolyses of 2,2,2-trichloro-1,1-dimethylethyl chloroformate (I) in 33 solvents can be well correlated using the extended Grunwald-Winstein equation, with incorporation of the NT solvent nucleophilicity scale and the YCl solvent ionizing scale, with sensitivities towards changes in the scale having values of 1.42 ± 0.09 for l and 0.39 ± 0.05 for m, respectively. The activation enthalpies are ∆H ≠ = 12.3 to 14.5 kcal·mol ‒1 and the activation entropies are ‒28.2 to ‒35.5 cal·mol ‒1 ·K ‒1 , consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect of 2.14 in MeOH/MeOD is in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

[1]  Shannon E. Carter,et al.  Extended Grunwald-Winstein Analysis - LFER Used to Gauge Solvent Effects in p-Nitrophenyl Chloroformate Solvolysis , 2008, International journal of molecular sciences.

[2]  D. N. Kevill,et al.  Rate and product studies with 2‐adamantyl fluoroformate under solvolytic conditions , 2007 .

[3]  G. Llewellyn,et al.  YX Scales of Solvent Ionizing Power , 2007 .

[4]  H. Lee,et al.  Kinetics and Mechanism of the Aminolysis of Diphenyl Phosphinic Chloride with Anilines , 2007 .

[5]  S. Ryu,et al.  Rate and Product Studies of Solvolyses of Benzyl Fluoroformate , 2006 .

[6]  D. N. Kevill,et al.  Application of the Extended Grunwald-Winstein Equation to Solvolyses of n-Propyl Chloroformate , 2005 .

[7]  D. N. Kevill,et al.  Correlation of the Rates of Solvolyses of Carbomethoxybenzyl Bromides Using the Grunwald-Winstein Equation , 2005 .

[8]  Jung-Suk Yoo,et al.  Solvolysis-decomposition of 2-adamantyl chloroformate: evidence for two reaction pathways. , 2003, The Journal of organic chemistry.

[9]  M. J. D’Souza,et al.  Correlation of the rates of solvolysis of benzoyl chloride and derivatives using extended forms of the Grunwald–Winstein equation† , 2002 .

[10]  D. N. Kevill,et al.  Application of the NT solvent nucleophilicity scale to attack at phosphorus: solvolyses of N,N,N',N'-tetramethyldiamidophosphorochloridate. , 2002, The Journal of organic chemistry.

[11]  T. W. Bentley,et al.  Product selectivities and third‐order rate laws for solvolyses of ethyl phenylphosphonochloridate in aqueous alcohols , 2001 .

[12]  Park,et al.  Rate and product studies with benzyl and p-nitrobenzyl chloroformates under solvolytic conditions , 2000, The Journal of organic chemistry.

[13]  M. J. D’Souza,et al.  Application of the NT Solvent Nucleophilicity Scale to Attack at Sulfur: Solvolyses of Benzenesulfonyl Chlorides , 1999 .

[14]  H. Lee,et al.  Kinetics and Mechanism of the Pyridinolysis of Phenyl Chloroformates in Acetonitrile , 1998 .

[15]  M. J. D’Souza,et al.  CONCERNING THE TWO REACTION CHANNELS FOR THE SOLVOLYSES OF ETHYL CHLOROFORMATE AND ETHYL CHLOROTHIOFORMATE , 1998 .

[16]  Chang Kon Kim,et al.  Theoretical studies on the reactions of substituted phenolate anions with formate esters , 1995 .

[17]  T. W. Bentley,et al.  Kinetics and Selectivities for the Solvolysis of N,N-Diphenylcarbamoyl Chloride , 1995 .

[18]  Andrew Williams,et al.  The diagnosis of concerted organic mechanisms , 1994 .

[19]  E. Castro,et al.  Concerted mechanism of the reactions of secondary alicyclic amines with O-ethyl S-(2,4,6-trinitrophenyl) thiocarbonate , 1994 .

[20]  E. Castro,et al.  Concerted mechanism of the aminolysis of O-ethyl S-(2,4-dinitrophenyl) thiocarbonate , 1991 .

[21]  S. Anderson,et al.  An improved scale of solvent nucleophilicity based on the solvolysis of the S-methyldibenzothiophenium ion , 1991 .

[22]  J. I. Brauman,et al.  Hemiacetal anions: a model for tetrahedral reaction intermediates , 1991 .

[23]  F. L. Weitl,et al.  Solvolysis-decomposition of 1-adamantyl chloroformate: evidence for ion pair return in 1-adamantyl chloride solvolysis , 1990 .

[24]  W. Jencks,et al.  Mechanism of solvolysis of substituted benzoyl halides , 1989 .

[25]  Ernest Grunwald,et al.  Rates and equilibria of organic reactions as treated by statistical, thermodynamic, and extrathermodynamic methods , 1989 .

[26]  W. L. Jorgensen,et al.  Ab initio study of the displacement reactions of chloride ion with formyl and acetyl chloride , 1987 .

[27]  Andrew C. Williams,et al.  A single transition state in the transfer of the methoxycarbonyl group between isoquinoline and substituted pyridines in aqueous solution , 1987 .

[28]  William L. Jorgensen,et al.  Ab initio and Monte Carlo calculations for a nucleophilic addition reaction in the gas phase and in aqueous solution , 1986 .

[29]  W. Jencks,et al.  Nucleophilic reactivity toward acetyl chloride in water , 1984 .

[30]  R. Grimes Role of metals in borane clusters , 2002 .

[31]  S. Yamabe,et al.  MOLECULAR ORBITAL STUDY ON THE GAS-PHASE NUCLEOPHILIC DISPLACEMENT ON ACYL CHLORIDES , 1983 .

[32]  T. W. Bentley,et al.  The SN2-SN1 spectrum. 4. The SN2 (intermediate) mechanism for solvolyses of tert-butyl chloride: a revised Y scale of solvent ionizing power based on solvolyses of 1-adamantyl chloride , 1982 .

[33]  William P. Jencks,et al.  When is an intermediate not an intermediate? Enforced mechanisms of general acid-base, catalyzed, carbocation, carbanion, and ligand exchange reaction , 1980 .

[34]  S. Patai The chemistry of acyl halides , 1972 .

[35]  F. L. Weitl,et al.  Kinetics and mechanism of the decomposition of 1-adamantyl chloroformate , 1968 .

[36]  A. Queen Kinetics of the hydrolysis of acyl chlorides in pure water , 1967 .

[37]  S. L. Johnson General Base and Nucleophilic Catalysis of Ester Hydrolysis and Related Reactions , 1967 .

[38]  S. Patai The Chemistry of the carbonyl group , 1966 .

[39]  M. L. Bender Mechanisms of Catalysis of Nucleophilic Reactions of Carboxylic Acid Derivatives. , 1960 .

[40]  H. Jones,et al.  The Correlation of Solvolysis Rates and the Classification of Solvolysis Reactions into Mechanistic Categories , 1951 .

[41]  J. Rogers,et al.  The Preparation of Di-t-butyl Carbonate and t-Butyl Chlorocarbonate1 , 1948 .

[42]  S. Winstein,et al.  The Correlation of Solvolysis Rates , 1948 .