A Demonstration of Interactive Analysis of Performance Measurements with Viska

The ultimate goal of system performance analysis is to identify the underlying causes for performance differences between different systems and different workloads. We make this goal easier to achieve with Viska, a new tool for generating and interpreting performance measurement results. Viska leverages cutting-edge techniques from big data analytics and data visualization to aid and automate this analysis, and helps users derive meaningful and statistically sound conclusions using state-of-the-art causal inference and hypothesis testing techniques.

[1]  Barzan Mozafari,et al.  DBSherlock: A Performance Diagnostic Tool for Transactional Databases , 2016, SIGMOD Conference.

[2]  T. Richardson,et al.  Covariate selection for the nonparametric estimation of an average treatment effect , 2011 .

[3]  Dan Suciu,et al.  WHY SO? or WHY NO? Functional Causality for Explaining Query Answers , 2009, MUD.

[4]  Tim Kraska,et al.  Toward Sustainable Insights, or Why Polygamy is Bad for You , 2017, CIDR.

[5]  Juliana Freire,et al.  Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets , 2016, SIGMOD Conference.

[6]  Stefano M. Iacus,et al.  cem: Software for Coarsened Exact Matching , 2009, Journal of Statistical Software.

[7]  Aditya G. Parameswaran,et al.  SEEDB: Automatically Generating Query Visualizations , 2014, Proc. VLDB Endow..

[8]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[9]  Jeffrey S. Chase,et al.  Correlating Instrumentation Data to System States: A Building Block for Automated Diagnosis and Control , 2004, OSDI.

[10]  Dan Suciu,et al.  PerfXplain: Debugging MapReduce Job Performance , 2012, Proc. VLDB Endow..

[11]  Herodotos Herodotou,et al.  A What-if Engine for Cost-based MapReduce Optimization , 2013, IEEE Data Eng. Bull..

[12]  Richard Mortier,et al.  Using Magpie for Request Extraction and Workload Modelling , 2004, OSDI.

[13]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[14]  Andreas Haeberlen,et al.  Data Provenance at Internet Scale: Architecture, Experiences, and the Road Ahead , 2017, CIDR.

[15]  Mona Attariyan,et al.  X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production Software , 2012, OSDI.

[16]  Gregory R. Ganger,et al.  Diagnosing Performance Changes by Comparing Request Flows , 2011, NSDI.