Estimating the tail index
暂无分享,去创建一个
[1] Sidney I. Resnick,et al. Why non-linearities can ruin the heavy-tailed modeler's day , 1998 .
[2] S. Resnick. Heavy tail modeling and teletraffic data: special invited paper , 1997 .
[3] S. Resnick,et al. Second-order regular variation, convolution and the central limit theorem , 1997 .
[4] László Viharos,et al. Asymptotic normality of least-squares estimators of tail indices , 1997 .
[5] L. Viharos. Tail index estimation based on linear combinations of intermediate order statistics , 1997 .
[6] Sidney I. Resnick,et al. Discussion of the Danish Data on Large Fire Insurance Losses , 1997, ASTIN Bulletin.
[7] A. McNeil. Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.
[8] R. Höpfner. On tail parameter estimation in certain point process models , 1997 .
[9] Sidney Resnick,et al. Smoothing the Hill Estimator , 1997, Advances in Applied Probability.
[10] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[11] U. Stadtmüller,et al. Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[12] A. M. Hasofer,et al. ESTIMATION OF QUANTILES FOR A FRÉCHET-TYPE DISTRIBUTION , 1996 .
[13] L. Viharos. Asymptotic distributions of linear combinations of intermediate order statistics , 1996 .
[14] Holger Drees,et al. Refined Pickands estimators of the extreme value index , 1995 .
[15] Michael Falk,et al. LAN of extreme order statistics , 1995 .
[16] Xiaoying Wei,et al. Asymptotically efficient estimation of the index of regular variation , 1995 .
[17] S. Csörgo,et al. On the asymptotic normality of Hill's estimator , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] S. Resnick,et al. Consistency of Hill's estimator for dependent data , 1995, Journal of Applied Probability.
[19] Qiang Wang,et al. A Monte Carlo method for estimating the correlation exponent , 1995 .
[20] B. M. Hill,et al. Bayesian Forecasting of Extreme Values in an Exchangeable Sequence , 1994, Journal of research of the National Institute of Standards and Technology.
[21] J. Hüsler,et al. Laws of Small Numbers: Extremes and Rare Events , 1994 .
[22] A. Dekkers,et al. Optimal choice of sample fraction in extreme-value estimation , 1993 .
[23] M. Broniatowski. On the estimation of the Weibull tail coefficient , 1993 .
[24] J. Teugels,et al. Limit distributions for compounded sums of extreme order statistics , 1992, Journal of Applied Probability.
[25] M. Berred. On record values and the exponent of a distribution with regularly varying upper tail , 1992, Journal of Applied Probability.
[26] D. Mason,et al. Intermediate- and extreme-sum processes , 1992 .
[27] Tailen Hsing,et al. On Tail Index Estimation Using Dependent Data , 1991 .
[28] D. Mason,et al. The Asymptotic Distribution of Extreme Sums , 1991 .
[29] Josef Steinebach,et al. On the estimation of the adjustment coefficient in risk theory via intermediate order statistics , 1991 .
[30] Mette Rytgaard,et al. Estimation in the Pareto Distribution , 1990, ASTIN Bulletin.
[31] Marcia M. A. Schafgans,et al. The tail index of exchange rate returns , 1990 .
[32] Josef Steinebach,et al. On Some alternative estimates of the adjustment coefficient in risk theory , 1990 .
[33] Peter Hall,et al. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .
[34] Jef L. Teugels,et al. Empirical Laplace transform and approximation of compound distributions , 1990, Journal of Applied Probability.
[35] G. Dargahi‐Noubary,et al. New Method for Prediction of Extreme Wind Speeds , 1989 .
[36] Paul Deheuvels,et al. Almost sure convergence of the Hill estimator , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.
[37] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[38] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[39] W. V. Zwet,et al. A REFINEMENT OF THE KMT INEQUALITY FOR THE UNIFORM EMPIRICAL PROCESS , 1987 .
[40] H. Joe. Estimation of quantiles of the maximum of N observations , 1987 .
[41] P. Révész,et al. On the Optimality of Estimating the Tail Index and a Naive Estimator , 1987 .
[42] Charles M. Goldie,et al. SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .
[43] G. Lo. Asymptotic behavior of Hill's estimate and applications , 1986, Journal of Applied Probability.
[44] A. Welsh. ON THE USE OF THE EMPIRICAL DISTRIBUTION AND CHARACTERISTIC FUNCTION TO ESTIMATE PARAMETERS OF REGULAR VARIATION , 1986 .
[45] G. Dargahi‐Noubary. A method for predicting future large earthquakes using extreme order statistics , 1986 .
[46] D. Mason,et al. Central limit theorems for sums of extreme values , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[47] Paul Deheuvels,et al. Kernel Estimates of the Tail Index of a Distribution , 1985 .
[48] E. Haeusler,et al. On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .
[49] Noel D. Uri,et al. Testing for stability: Motor gasoline demand and distillate fuel oil demand , 1985 .
[50] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[51] Sidney I. Resnick,et al. Tail estimates motivated by extreme-value theory , 1984, Advances in Applied Probability.
[52] Alan H. Welsh,et al. Best Attainable Rates of Convergence for Estimates of Parameters of Regular Variation , 1984 .
[53] W. DuMouchel. Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .
[54] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[55] D. Mason. Laws of Large Numbers for Sums of Extreme Values , 1982 .
[56] J. Teugels. Limit Theorems on Order Statistics , 1981 .
[57] Sidney I. Resnick,et al. A Simple Asymptotic Estimate for the Index of a Stable Distribution , 1980 .
[58] Wen-chen Chen. On the Weak form of Zipf's law , 1980, Journal of Applied Probability.
[59] L. Haan. Estimation of the Minimum of a Function Using Order Statistics , 1980 .
[60] W. W. Daniel. Applied Nonparametric Statistics , 1978 .
[61] Ishay Weissman,et al. Estimation of parameters and large quantiles based on the K largest observations , 1978, Advances in Applied Probability.
[62] Michael Woodroofe,et al. On Zipf's law , 1975, Journal of Applied Probability.
[63] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[64] Michael Woodroofe,et al. Stronger Forms of Zipf's Law , 1975 .
[65] Bruce M. Hill,et al. The Rank-Frequency Form of Zipf's Law , 1974 .
[66] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[67] Laurens de Haan,et al. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[68] B. M. Hill,et al. Zipf's Law and Prior Distributions for the Composition of a Population , 1970 .
[69] B. Mandelbrot. THE PARETO-LEVY LAW AND THE DISTRIBUTION OF INCOME* , 1960 .
[70] H. Simon,et al. ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .
[71] S. Resnick,et al. On asymptotic normality of the hill estimator , 1998 .
[72] J. Huston McCulloch,et al. Measuring Tail Thickness to Estimate the Stable Index α: A Critique , 1997 .
[73] S. Resnick,et al. Asymptotic behavior of hill's estimator for autoregressive data , 1997 .
[74] Nader Tajvidi,et al. Extreme value statistics and wind storm losses: a case study. , 1997 .
[75] S. Novak. On the Distribution of the Ratioof Sums of Random Variables , 1997 .
[76] J. Huston McCulloch,et al. 13 Financial applications of stable distributions , 1996 .
[77] S. Resnick,et al. The qq-estimator and heavy tails , 1996 .
[78] Gennady Samorodnitsky,et al. A Class of Shot Noise Models for Financial Applications , 1996 .
[79] Casper G. de Vries,et al. Fat tail distributions and local thin tail alternatives , 1996 .
[80] L. Haan. Von mises-type conditions in second order regular variation , 1996 .
[81] J. Beirlant,et al. Extreme value analysis of diamond-size distributions , 1996 .
[82] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[83] Josef Steinebach,et al. ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .
[84] Jon Danielsson,et al. The method of moments ratio estimator for the tail shape parameter , 1996 .
[85] Margarida Brito,et al. Weak limiting behaviour of a simple tail Pareto-index estimator , 1995 .
[86] M. Berred. K-record values and the extreme-value index , 1995 .
[87] M. I. Fraga Alves,et al. Estimation of the tail parameter in the domain of attraction of an extremal distribution , 1995 .
[88] Jan Beirlant,et al. Extremes in Non-Life Insurance , 1994 .
[89] D. Mason,et al. Weak Convergence of the Hill Estimator Process , 1994 .
[90] Michael Falk,et al. Efficiency of convex combinations of pickands estimator of the extreme value index , 1994 .
[91] D. Mason,et al. The Asymptotic Distribution of Intermediate Sums , 1994 .
[92] S. Utev,et al. Asymptotics of the distribution of the ratio of sums of random variables , 1990 .
[93] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[94] A. Janssen. The Role of Extreme Order Statistics for Exponential Families , 1989 .
[95] Dennis W. Jansen,et al. On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective , 1989 .
[96] J. Teugels,et al. Asymptotic Normality of Hill’s Estimator , 1989 .
[97] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[98] J. Beirlant,et al. The Asymptotic Behavior of Hill’s Estimator , 1987 .
[99] D. Mason,et al. Weighted Empirical and Quantile Processes , 1986 .
[100] J. Teugels,et al. Limit theorems for Pareto-type distributions , 1985 .
[101] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[102] B. Mandelbrot. The Variation of Certain Speculative Prices , 1963 .
[103] G. Yule,et al. A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .
[104] F. Auerbach. Das Gesetz der Bevölkerungskonzentration. , 1913 .
[105] C. Gide. Cours d'économie politique , 1911 .