Flat families by strongly stable ideals and a generalization of Gröbner bases

Let J be a strongly stable monomial ideal in S=K[x"0,...,x"n] and let Mf(J) be the family of all homogeneous ideals I in S such that the set of all terms outside J is a K-vector basis of the quotient S/I. We show that an ideal I belongs to Mf(J) if and only if it is generated by a special set of polynomials, the J-marked basis of I, that in some sense generalizes the notion of reduced Grobner basis and its constructive capabilities. Indeed, although not every J-marked basis is a Grobner basis with respect to some term order, a sort of reduced form modulo I@?Mf(J) can be computed for every homogeneous polynomial, so that a J-marked basis can be characterized by a Buchberger-like criterion. Using J-marked bases, we prove that the family Mf(J) can be endowed, in a very natural way, with a structure of an affine scheme that turns out to be homogeneous with respect to a non-standard grading and flat in the origin (the point corresponding to J), thanks to properties ofJ-marked bases analogous to those of Grobner bases about syzygies.

[1]  Lorenzo Robbiano On border basis and Gröbner basis schemes , 2008 .

[2]  Margherita Roggero,et al.  Homogeneous varieties for Hilbert schemes , 2009, 0901.3263.

[3]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[4]  Paolo Lella,et al.  Rational components of Hilbert schemes , 2009, 0903.1029.

[5]  Tie Luo,et al.  On the lifting problem for homogeneous ideals , 2001 .

[6]  Bernard Mourrain,et al.  Generalized normal forms and polynomial system solving , 2005, ISSAC.

[7]  Maria Luisa Spreafico,et al.  A stratification of Hilbert schemes by initial ideals and applications , 2000 .

[8]  T. Willmore Algebraic Geometry , 1973, Nature.

[9]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[10]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[11]  Maria Grazia Marinari,et al.  Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.

[12]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[13]  Bruno Buchberger,et al.  The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.

[14]  Maurice Janet,et al.  Leçons sur les systèmes d'équations aux dérivées partielles , 1930, Nature.

[15]  André Galligo,et al.  Théorème de division et stabilité en géométrie analytique locale , 1979 .

[16]  Bernard Mourrain,et al.  Stable normal forms for polynomial system solving , 2008, Theor. Comput. Sci..

[17]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[18]  Rüdiger Gebauer,et al.  Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.

[19]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[20]  Margherita Roggero,et al.  IDEALS WITH AN ASSIGNED INITIAL IDEAL , 2008, 0807.3877.

[21]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[22]  J. Pommaret Systems of partial differential equations and Lie pseudogroups , 1978 .

[23]  Giuseppe Valla,et al.  Problems and Results on Hilbert Functions of Graded Algebras , 1998 .

[24]  N. Bose Multidimensional Systems Theory , 1985 .

[25]  Allen Tannenbaum,et al.  Lectures on deformations of singularities , 1976 .

[26]  Francesca Cioffi,et al.  Computation of minimal generators of ideals of fat points , 2001, ISSAC '01.

[27]  Bernd Sturmfels,et al.  A Note on Polynomial Reduction , 1993, J. Symb. Comput..

[28]  Vladimir P. Gerdt,et al.  On the Relation between Pommaret and Janet Bases , 2000 .

[29]  Vladimir P. Gerdt,et al.  Minimal involutive bases , 1998 .

[30]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[31]  Anthony V. Geramita,et al.  The Curves Seminar at Queen's , 1981 .

[32]  Bruce W. Char Proceedings of the fifth ACM symposium on Symbolic and algebraic computation , 1986 .

[33]  H. M. Möller,et al.  New Constructive Methods in Classical Ideal Theory , 1986 .

[34]  Yuri A. Blinkov,et al.  Involutive bases of polynomial ideals , 1998, math/9912027.

[35]  Giuseppa Carrà Ferro Gröbner Bases and Hilbert Schemes. I , 1988, J. Symb. Comput..

[36]  Birgit Reinert,et al.  Computing Gröbner bases in monoid and group rings , 1993, ISSAC '93.