Flat families by strongly stable ideals and a generalization of Gröbner bases
暂无分享,去创建一个
[1] Lorenzo Robbiano. On border basis and Gröbner basis schemes , 2008 .
[2] Margherita Roggero,et al. Homogeneous varieties for Hilbert schemes , 2009, 0901.3263.
[3] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .
[4] Paolo Lella,et al. Rational components of Hilbert schemes , 2009, 0903.1029.
[5] Tie Luo,et al. On the lifting problem for homogeneous ideals , 2001 .
[6] Bernard Mourrain,et al. Generalized normal forms and polynomial system solving , 2005, ISSAC.
[7] Maria Luisa Spreafico,et al. A stratification of Hilbert schemes by initial ideals and applications , 2000 .
[8] T. Willmore. Algebraic Geometry , 1973, Nature.
[9] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[10] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[11] Maria Grazia Marinari,et al. Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.
[12] Bernard Mourrain,et al. A New Criterion for Normal Form Algorithms , 1999, AAECC.
[13] Bruno Buchberger,et al. The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.
[14] Maurice Janet,et al. Leçons sur les systèmes d'équations aux dérivées partielles , 1930, Nature.
[15] André Galligo,et al. Théorème de division et stabilité en géométrie analytique locale , 1979 .
[16] Bernard Mourrain,et al. Stable normal forms for polynomial system solving , 2008, Theor. Comput. Sci..
[17] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[18] Rüdiger Gebauer,et al. Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.
[19] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[20] Margherita Roggero,et al. IDEALS WITH AN ASSIGNED INITIAL IDEAL , 2008, 0807.3877.
[21] Martin Kreuzer,et al. Computational Commutative Algebra 1 , 2000 .
[22] J. Pommaret. Systems of partial differential equations and Lie pseudogroups , 1978 .
[23] Giuseppe Valla,et al. Problems and Results on Hilbert Functions of Graded Algebras , 1998 .
[24] N. Bose. Multidimensional Systems Theory , 1985 .
[25] Allen Tannenbaum,et al. Lectures on deformations of singularities , 1976 .
[26] Francesca Cioffi,et al. Computation of minimal generators of ideals of fat points , 2001, ISSAC '01.
[27] Bernd Sturmfels,et al. A Note on Polynomial Reduction , 1993, J. Symb. Comput..
[28] Vladimir P. Gerdt,et al. On the Relation between Pommaret and Janet Bases , 2000 .
[29] Vladimir P. Gerdt,et al. Minimal involutive bases , 1998 .
[30] Carlo Traverso,et al. Gröbner bases computation using syzygies , 1992, ISSAC '92.
[31] Anthony V. Geramita,et al. The Curves Seminar at Queen's , 1981 .
[32] Bruce W. Char. Proceedings of the fifth ACM symposium on Symbolic and algebraic computation , 1986 .
[33] H. M. Möller,et al. New Constructive Methods in Classical Ideal Theory , 1986 .
[34] Yuri A. Blinkov,et al. Involutive bases of polynomial ideals , 1998, math/9912027.
[35] Giuseppa Carrà Ferro. Gröbner Bases and Hilbert Schemes. I , 1988, J. Symb. Comput..
[36] Birgit Reinert,et al. Computing Gröbner bases in monoid and group rings , 1993, ISSAC '93.