An aseismic slip transient on the North Anatolian Fault

Constellations of Synthetic Aperture Radar (SAR) satellites with short repeat time acquisitions allow exploration of active faults behavior with unprecedented temporal resolution. Along the North Anatolian Fault (NAF) in Turkey, an 80 km long section has been creeping at least since the 1944, M_w 7.3 earthquake near Ismetpasa, with a current Interferometric Synthetic Aperture Radar (InSAR)-derived average creep rate of 8 ± 3 mm/yr (i.e., a third of the NAF long-term slip rate). We use a dense set of SAR images acquired by the COSMO-SkyMed constellation to quantify the spatial distribution and temporal evolution of creep over 1 year. We identify a major burst of aseismic slip spanning 31 days with a maximum slip of 2 cm, between the surface and 4 km depth. This result shows that fault creep along this section of the NAF does not occur at a steady rate as previously thought, highlighting a need to revise our understanding of the underlying fault mechanics.

[1]  Gian Franco Sacco,et al.  InSAR Scientific Computing Environment , 2011 .

[2]  Kelin Wang,et al.  A Silent Slip Event on the Deeper Cascadia Subduction Interface , 2001, Science.

[3]  N. N. Ambraseys,et al.  Some characteristic features of the Anatolian fault zone , 1970 .

[4]  François Renard,et al.  The Burst‐Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China , 2015 .

[5]  Z. Çakır,et al.  Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR , 2014 .

[6]  T. Maeda,et al.  Slow Earthquakes Linked Along Dip in the Nankai Subduction Zone , 2010, Science.

[7]  Haluk Ozener,et al.  Onset of aseismic creep on major strike-slip faults , 2012 .

[8]  Marie-Pierre Doin,et al.  New Radar Interferometric Time Series Analysis Toolbox Released , 2013 .

[9]  Semih Ergintav,et al.  Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR , 2005 .

[10]  M. Brudzinski,et al.  Search for Tectonic Tremor on the Central North Anatolian Fault, Turkey , 2015 .

[11]  Piyush Agram,et al.  Aseismic slip and seismogenic coupling along the central San Andreas Fault , 2015 .

[12]  L. Rivera,et al.  Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations , 2002 .

[13]  James L. Beck,et al.  Bayesian inversion for finite fault earthquake source models I—theory and algorithm , 2013 .

[14]  D. Shelly Complexity of the deep San Andreas Fault zone defined by cascading tremor , 2015 .

[15]  Marie-Pierre Doin,et al.  Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties , 2013 .

[16]  Zhigang Peng,et al.  An integrated perspective of the continuum between earthquakes and slow-slip phenomena , 2010 .

[17]  Y. Kaneko,et al.  Dynamic triggering of creep events in the Salton Trough, Southern California by regional M ≥ 5.4 earthquakes constrained by geodetic observations and numerical simulations , 2015 .

[18]  Jean Schmittbuhl,et al.  Direct Observation of a Self-Affine Crack Propagation , 1997 .

[19]  J. Avouac,et al.  Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan , 2013 .

[20]  G. Beroza,et al.  A scaling law for slow earthquakes , 2007, Nature.

[21]  R. Clayton,et al.  The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone , 2010 .

[22]  J. Beck,et al.  Accounting for prediction uncertainty when inferring subsurface fault slip , 2014 .

[23]  Alan T. Linde,et al.  A slow earthquake sequence on the San Andreas fault , 1996, Nature.

[24]  D. Sandwell,et al.  A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California , 2009 .

[25]  Gian Franco Sacco,et al.  The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science , 2015 .

[26]  N. Lapusta,et al.  Three‐dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip , 2009 .

[27]  Y. Kaneko,et al.  Episodic fault creep events in California controlled by shallow frictional heterogeneity , 2013 .

[28]  J. Avouac,et al.  Under the Hood of the Earthquake Machine: Toward Predictive Modeling of the Seismic Cycle , 2012, Science.

[29]  James H. Dieterich,et al.  Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering , 1997 .

[30]  M. Simons,et al.  A multiscale approach to estimating topographically correlated propagation delays in radar interferograms , 2010 .

[31]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[32]  Kristy F. Tiampo,et al.  The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading , 2012 .

[33]  D. Raucoules,et al.  Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault (1993–2004) from synthetic aperture radar , 2011 .

[34]  Paul Segall,et al.  Spatiotemporal evolution of a transient slip event on the San Andreas fault near Parkfield, California , 2005 .

[35]  Marie-Pierre Doin,et al.  Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry , 2012 .

[36]  C. Tape,et al.  Earthquake nucleation and triggering on an optimally oriented fault , 2013 .

[37]  M. Shirzaei,et al.  Time‐dependent model of aseismic slip on the central San Andreas Fault from InSAR time series and repeating earthquakes , 2014 .

[38]  D. Rivet,et al.  Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake , 2012 .

[39]  Virginie Pinel,et al.  Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data , 2011 .

[40]  H. Dragert,et al.  Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip , 2003, Science.

[41]  Rowena B. Lohman,et al.  Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling , 2005 .

[42]  A. Şengör,et al.  The North Anatolian transform fault: its age, offset and tectonic significance , 1979, Journal of the Geological Society.

[43]  M. Simons,et al.  An aseismic slip pulse in northern Chile and along‐strike variations in seismogenic behavior , 2006 .

[44]  W. D. Stuart,et al.  Long‐term fault creep observations in central California , 1982 .

[45]  David T. Sandwell,et al.  High‐resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR , 2013 .

[46]  J. C. Savage,et al.  Geodetic determination of relative plate motion in central California , 1973 .

[47]  Demitris Paradissis,et al.  Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus , 2000 .

[48]  C. Whitten,et al.  Creep on the San Andreas fault , 1960 .

[49]  D. Sandwell,et al.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate‐and‐state friction properties , 2013 .

[50]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .