Lists that are smaller than their parts: A coding approach to tunable secrecy

We present a new information-theoretic definition and associated results, based on list decoding in a source coding setting. We begin by presenting list-source codes, which naturally map a key length (entropy) to list size. We then show that such codes can be analyzed in the context of a novel information-theoretic metric, ϵ-symbol secrecy, that encompasses both the one-time pad and traditional rate-based asymptotic metrics, but, like most cryptographic constructs, can be applied in non-aymptotic settings. We derive fundamental bounds for ϵ-symbol secrecy and demonstrate how these bounds can be achieved with MDS codes when the source is uniformly distributed. We discuss applications and implementation issues of our codes.

[1]  Muriel Médard,et al.  Trusted Storage over Untrusted Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[2]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[3]  Emina Soljanin,et al.  Secure Network Coding for Wiretap Networks of Type II , 2009, IEEE Transactions on Information Theory.

[4]  Ueli Maurer,et al.  Communications and Cryptography , 1994 .

[5]  J. Massey,et al.  Communications and Cryptography: Two Sides of One Tapestry , 1994 .

[6]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[7]  Muriel Médard,et al.  Random Linear Network Coding: A free cipher? , 2007, 2007 IEEE International Symposium on Information Theory.

[8]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[9]  Jonathan Katz,et al.  Introduction to Modern Cryptography: Principles and Protocols , 2007 .

[10]  Sriram Vishwanath,et al.  On secure communication over wireless erasure networks , 2008, 2008 IEEE International Symposium on Information Theory.

[11]  Ning Cai,et al.  Theory of Secure Network Coding , 2011, Proceedings of the IEEE.

[12]  Venkatesan Guruswami List Decoding of Binary Codes-A Brief Survey of Some Recent Results , 2009, IWCC.

[13]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[14]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[15]  Mortuza Ali,et al.  Source coding with side information using list decoding , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[17]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[18]  Frank R. Kschischang,et al.  Universal Secure Network Coding via Rank-Metric Codes , 2008, IEEE Transactions on Information Theory.

[19]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[20]  Virgil D. Gligor,et al.  A key-management scheme for distributed sensor networks , 2002, CCS '02.

[21]  Jon Feldman,et al.  On the Capacity of Secure Network Coding , 2004 .

[22]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[23]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[24]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .