A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method
暂无分享,去创建一个
Ivo Babuška | T. Strouboulis | Chandra Shekhar Upadhyay | I. Babuska | T. Strouboulis | C. Upadhyay | S. Gangaraj | S. K. Gangaraj
[1] T. Strouboulis,et al. Validation of recipes for the recovery of stresses and derivatives by a computer-based approach , 1994 .
[2] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[3] Ivo Babuška,et al. Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .
[4] Ivo Babuška,et al. η%-Superconvergence of finite element approximations in the interior of general meshes of triangles , 1995 .
[5] Jacob Fish,et al. Adaptive global-local refinement strategy based on the interior error estimates of the h-method , 1994 .
[6] I. Babuska,et al. Finite Element Analysis , 2021 .
[7] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[8] I. Babuska,et al. A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .
[9] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[10] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[11] Ivo Babuška,et al. Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .
[12] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[13] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[14] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[15] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[16] Philippe Marin,et al. Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .
[17] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[18] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[19] Ivo Babuška,et al. Quality assessment of the a-posteriori error estimation in finite elements , 1992 .
[20] R. Rannacher,et al. Extrapolation techniques for reducing the pollution effect or reentrant corners in the finite element method , 1987 .
[21] Ivo Babuška,et al. e%-superconvergence in the interior of locally refined meshes of quadrilaterals: superconvergence of the gradient in finite element solutions of Laplace's and Poisson's equations , 1994 .
[22] L. Wahlbin. On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .
[23] Norman F. Knight,et al. Global/local stress analysis of composite panels , 1990 .
[24] Ivo Babuška,et al. Basic problems of a posteriori error estimation , 1992 .
[25] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data, II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions , 1989 .
[26] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .