Purity for graded potentials and quantum cluster positivity

Consider a smooth quasi-projective variety $X$ equipped with a $\mathbb{C}^{\ast }$-action, and a regular function $f:X\rightarrow \mathbb{C}$ which is $\mathbb{C}^{\ast }$-equivariant with respect to a positive weight action on the base. We prove the purity of the mixed Hodge structure and the hard Lefschetz theorem on the cohomology of the vanishing cycle complex of $f$ on proper components of the critical locus of $f$, generalizing a result of Steenbrink for isolated quasi-homogeneous singularities. Building on work by Kontsevich and Soibelman, Nagao, and Efimov, we use this result to prove the quantum positivity conjecture for cluster mutations for all quivers admitting a positively graded nondegenerate potential. We deduce quantum positivity for all quivers of rank at most 4; quivers with nondegenerate potential admitting a cut; and quivers with potential associated to triangulations of surfaces with marked points and nonempty boundary.

[1]  C. Geiss,et al.  The representation type of Jacobian algebras , 2013, 1308.0478.

[2]  L. Thuong Proofs of the integral identity conjecture over algebraically closed fields , 2012, 1206.5334.

[3]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[4]  L. Maxim,et al.  Intersection spaces, perverse sheaves and type IIB string theory , 2012, 1212.2196.

[5]  Fan Qin,et al.  Graded quiver varieties, quantum cluster algebras and dual canonical basis , 2012, 1205.2066.

[6]  Steffen Oppermann,et al.  CLUSTER EQUIVALENCE AND GRADED DERIVED EQUIVALENCE , 2010, 1003.4916.

[7]  D. Massey Iterated vanishing cycles , 2013 .

[8]  Ralf Schiffler,et al.  Positivity for cluster algebras , 2013, 1306.2415.

[9]  Balázs Szendrői Nekrasov's Partition Function and Refined Donaldson-Thomas Theory: the Rank One Case , 2012, 1210.5181.

[10]  A. Efimov Quantum cluster variables via vanishing cycles , 2011, 1112.3601.

[11]  Robert J. Marsh,et al.  Cluster mutation-periodic quivers and associated Laurent sequences , 2009, 0904.0200.

[12]  M. Kontsevich,et al.  Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.

[13]  K. Nagao Donaldson-Thomas theory and cluster algebras , 2010, 1002.4884.

[14]  Pierre-Guy Plamondon Cluster characters for cluster categories with infinite-dimensional morphism spaces , 2010, 1002.4956.

[15]  B. Keller Triangulated Categories: Cluster algebras, quiver representations and triangulated categories , 2008, 0807.1960.

[16]  K. Behrend Donaldson-Thomas type invariants via microlocal geometry , 2009 .

[17]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[18]  L. Williams,et al.  Positivity for cluster algebras from surfaces , 2009, 0906.0748.

[19]  H. Nakajima Quiver varieties and cluster algebras , 2009, 0905.0002.

[20]  A. Dimca,et al.  The Milnor fibre of the Pfaffian and the Hilbert scheme of four points on C^3 , 2009, 0904.2419.

[21]  Yan Soibelman,et al.  Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.

[22]  H. Nakajima,et al.  Counting invariant of perverse coherent sheaves and its wall-crossing , 2008, 0809.2992.

[23]  S. Mozgovoy,et al.  On the noncommutative Donaldson-Thomas invariants arising from brane tilings , 2008, 0809.0117.

[24]  L.Katzarkov,et al.  Hodge theoretic aspects of mirror symmetry , 2008, 0806.0107.

[25]  I. Reiten,et al.  Mutation of cluster-tilting objects and potentials , 2008, 0804.3813.

[26]  C. Geiss,et al.  Preprojective algebras and cluster algebras , 2008, 0804.3168.

[27]  D. Labardini-Fragoso,et al.  Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.

[28]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[29]  V. Ginzburg Calabi-Yau algebras , 2006, math/0612139.

[30]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[31]  A. Zelevinsky,et al.  Quantum cluster algebras , 2004, math/0404446.

[32]  David E. Speyer,et al.  Perfect matchings and the octahedron recurrence , 2004, math/0402452.

[33]  F. Loeser,et al.  Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink , 2003, math/0312203.

[34]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[35]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[36]  T. Bridgeland Equivalences of Triangulated Categories and Fourier–Mukai Transforms , 1998, math/9809114.

[37]  Valentine S. Kulikov Mixed Hodge Structures and Singularities , 1998 .

[38]  J. Denef,et al.  Motivic exponential integrals and a Motivic Thom-Sebastiani theorem , 1998, math/9803048.

[39]  A. King MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .

[40]  M. Saito,et al.  Modules de Hodge Polarisables , 1988 .

[41]  Lieven Le Bruyn,et al.  Semisimple representations of quivers , 1990 .

[42]  V. N. Aznar Sur la théorie de Hodge-Deligne , 1987 .

[43]  M. Saito,et al.  Mixed Hodge modules , 1990 .

[44]  J. H. M. Steenbrink,et al.  On the mixed Hodge structure on the cohomology of the Milnor fibre , 1985 .

[45]  J. H. M. Steenbrink,et al.  Mixed Hodge Structure on the Vanishing Cohomology , 1977 .

[46]  J. Steenbrink Intersection form for quasi-homogeneous singularities , 1977 .

[47]  J. Steenbrink Limits of Hodge structures , 1976 .

[48]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .