Robust minimum variance portfolio optimization modelling under scenario uncertainty

Our purpose in this article is to develop a robust optimization model which minimizes portfolio variance for a finite set of covariance matrices scenarios. The proposed approach aims at the proper selection of portfolios, in a way that for every covariance matrix estimate included in the analysis, the calculated portfolio variance remains as close to the corresponding individual minimum value, as possible. To accomplish this, we formulate a mixed-integer non-linear program with quadratic constraints. With respect to practical underlying concerns, investment policy constraints regarding the portfolio structure are also taken into consideration. The validity of the proposed approach is verified through extensive out-of-sample empirical testing in the EuroStoxx 50, the S&P 100, the S&P 500, as well as a well-diversified investment universe of ETFs. We report consistent generation of stable out-of-sample returns, which are in most cases superior to those of the worst-case scenario. Moreover, we provide strong evidence that the proposed robust model assists in selective asset picking and systematic avoidance of excessive losses.

[1]  Wei-Guo Zhang,et al.  Multi-period portfolio optimization under possibility measures , 2013 .

[2]  Frank J. Fabozzi,et al.  What do robust equity portfolio models really do? , 2012, Annals of Operations Research.

[3]  Matthias Ehrgott,et al.  Minmax robustness for multi-objective optimization problems , 2014, Eur. J. Oper. Res..

[4]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[5]  Frank J. Fabozzi,et al.  Robust portfolios: contributions from operations research and finance , 2010, Ann. Oper. Res..

[6]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[7]  Jörg Fliege,et al.  Robust multiobjective optimization & applications in portfolio optimization , 2014, Eur. J. Oper. Res..

[8]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[9]  George Mavrotas,et al.  Multiobjective portfolio optimization with non-convex policy constraints: Evidence from the Eurostoxx 50 , 2014 .

[10]  Jitka Dupacová,et al.  Robustness of optimal portfolios under risk and stochastic dominance constraints , 2014, Eur. J. Oper. Res..

[11]  Dimitris Bertsimas,et al.  Robust multiperiod portfolio management in the presence of transaction costs , 2008, Comput. Oper. Res..

[12]  Fang Han,et al.  Robust Portfolio Optimization , 2015, NIPS.

[13]  Frank J. Fabozzi,et al.  Recent Developments in Robust Portfolios with a Worst-Case Approach , 2014, J. Optim. Theory Appl..

[14]  F. Fabozzi,et al.  Composition of robust equity portfolios , 2013 .

[15]  Mustafa Ç. Pinar,et al.  Robust profit opportunities in risky financial portfolios , 2005, Oper. Res. Lett..

[16]  Constantin Zopounidis,et al.  IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection , 2011, Eur. J. Oper. Res..

[17]  Frank J. Fabozzi,et al.  Robust portfolios that do not tilt factor exposure , 2014, Eur. J. Oper. Res..

[18]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[19]  F. Fabozzi Robust Portfolio Optimization and Management , 2007 .

[20]  Ramazan Gençay,et al.  Investment Horizon Effect on Asset Allocation between Value and Growth Strategies , 2010 .

[21]  Geng Deng,et al.  Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios , 2013 .

[22]  Arlen Khodadadi,et al.  Optimisation and quantitative investment management , 2006 .

[23]  Bertrand Maillet,et al.  Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach , 2015, Eur. J. Oper. Res..

[24]  Maria Grazia Speranza,et al.  Twenty years of linear programming based portfolio optimization , 2014, Eur. J. Oper. Res..

[25]  Manuel Laguna,et al.  Minimising the maximum relative regret for linear programmes with interval objective function coefficients , 1999, J. Oper. Res. Soc..

[26]  Amit Kanudia,et al.  Minimax regret strategies for greenhouse gas abatement: methodology and application , 1997, Oper. Res. Lett..

[27]  Haixiang Yao,et al.  Multi-period Markowitz's mean–variance portfolio selection with state-dependent exit probability , 2014 .

[28]  Frank J. Fabozzi,et al.  Focusing on the worst state for robust investing , 2015 .

[29]  H. Luthi Algorithms for Worst-Case Design and Applications to Risk Management:Algorithms for Worst-Case Design and Applications to Risk Management , 2002 .

[30]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[31]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[32]  Javier F. Pena,et al.  Optimization Methods in Finance: Stochastic programming: theory and algorithms , 2006 .

[33]  Tae-Hwan Kim,et al.  Robust estimation of covariance and its application to portfolio optimization , 2012 .

[34]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[35]  Ken Darby-Dowman,et al.  Robust optimization and portfolio selection: The cost of robustness , 2011, Eur. J. Oper. Res..

[36]  Maria Grazia Scutellà,et al.  Robust portfolio asset allocation and risk measures , 2013, Ann. Oper. Res..

[37]  Amir Abbas Najafi,et al.  Robust goal programming for multi-objective portfolio selection problem , 2013 .

[38]  Qaisar Abbas,et al.  Robust analysis for downside risk in portfolio management for a volatile stock market , 2015 .