GLSE Precoders for Massive MIMO Systems: Analysis and Applications

This paper proposes the class of generalized least-square-error (GLSE) precoders for multiuser massive multiple-input multiple-output (MIMO) systems. For a generic transmit constellation, the GLSE precoders minimize the interference at user terminals assuring that some given constraints on the transmit signals are satisfied. The general form of these precoders enables us to impose multiple restrictions at the transmit signal, such as limited peak power and restricted number of active transmit antennas. The performance of these precoders is analyzed in the large-system limit. It is shown that the output symbols are identically distributed, and their statistics are described with an equivalent scalar GLSE precoder. To demonstrate the applications of the proposed framework, we employ the GLSE precoding to form transmit signals over a discrete alphabet and to select an effective subset of transmit antennas. Our investigations show that a computationally efficient GLSE precoder requires 41% less active transmit antennas than the conventional selection protocols in order to achieve a given level of input–output distortion.

[1]  Theodore S. Rappaport,et al.  Overview of spatial channel models for antenna array communication systems , 1998, IEEE Wirel. Commun..

[2]  A. Guionnet,et al.  A Fourier view on the R-transform and related asymptotics of spherical integrals , 2005 .

[3]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[4]  Mohammad Gharavi-Alkhansari,et al.  Fast antenna subset selection in MIMO systems , 2004, IEEE Transactions on Signal Processing.

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  Aris L. Moustakas,et al.  On the Outage Capacity of Correlated Multiple-Path MIMO Channels , 2005, IEEE Transactions on Information Theory.

[7]  Jie Xu,et al.  Energy Efficiency Optimization for MIMO Broadcast Channels , 2013, IEEE Transactions on Wireless Communications.

[8]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[9]  Ali Bereyhi,et al.  RSB decoupling property of MAP estimators , 2016, 2016 IEEE Information Theory Workshop (ITW).

[10]  Ali Bereyhi,et al.  Nonlinear Precoders for Massive MIMO Systems with General Constraints , 2017, WSA.

[11]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[12]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[13]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[14]  Symeon Chatzinotas,et al.  Energy-efficient coordinated multi-cell multi-group multicast beamforming with antenna selection , 2017, 2017 IEEE International Conference on Communications Workshops (ICC Workshops).

[15]  Ali Bereyhi,et al.  Precoding via Approximate Message Passing with Instantaneous Signal Constraints , 2018, ArXiv.

[16]  Erik G. Larsson,et al.  PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink , 2012, IEEE Journal on Selected Areas in Communications.

[17]  N. Macris,et al.  The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference , 2018, Probability Theory and Related Fields.

[18]  Robert F. H. Fischer,et al.  Space-Time Transmission using Tomlinson-Harashima Precoding , 2002 .

[19]  Ali Bereyhi,et al.  Least Square Error Precoders for Massive MIMO With Signal Constraints: Fundamental Limits , 2018, IEEE Transactions on Wireless Communications.

[20]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[21]  A. Lee Swindlehurst,et al.  A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization , 2005, IEEE Transactions on Communications.

[22]  Ali Bereyhi,et al.  Theoretical Bounds on MAP Estimation in Distributed Sensing Networks , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[23]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[24]  Ali Bereyhi,et al.  Statistical Mechanics of MAP Estimation: General Replica Ansatz , 2016, IEEE Transactions on Information Theory.

[25]  Ali Bereyhi,et al.  Asymptotics of transmit antenna selection: Impact of multiple receive antennas , 2017, 2017 IEEE International Conference on Communications (ICC).

[26]  Ralf R. Müller,et al.  Load modulated arrays: a low-complexity antenna , 2016, IEEE Communications Magazine.

[27]  Ali Bereyhi,et al.  A new class of nonlinear precoders for hardware efficient massive MIMO systems , 2017, 2017 IEEE International Conference on Communications (ICC).

[28]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[29]  Ralf R. Müller,et al.  A Novel Single-RF Transmitter for Massive MIMO , 2014, WSA.

[30]  Jim Esch Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation , 2014, Proc. IEEE.

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[33]  Symeon Chatzinotas,et al.  Symbol-Level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-Art, Classification, and Challenges , 2018, IEEE Communications Surveys & Tutorials.

[34]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[35]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[36]  Tom Goldstein,et al.  Quantized Precoding for Massive MU-MIMO , 2016, IEEE Transactions on Communications.

[37]  Arogyaswami Paulraj,et al.  Receive antenna selection for MIMO spatial multiplexing: theory and algorithms , 2003, IEEE Trans. Signal Process..

[38]  Xiaodai Dong,et al.  Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems , 2014, IEEE Wireless Communications Letters.

[39]  M. Talagrand The parisi formula , 2006 .

[40]  Ralf R. Müller,et al.  Discrete Load-Modulated Single-RF MIMO Transmitters , 2016, WSA.

[41]  Symeon Chatzinotas,et al.  Symbol-Level Precoding for the Nonlinear Multiuser MISO Downlink Channel , 2018, IEEE Transactions on Signal Processing.

[42]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[43]  Erik G. Larsson,et al.  Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO Systems , 2012, IEEE Transactions on Communications.

[44]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[45]  Ralf R. Müller,et al.  Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking , 2010, IEEE Transactions on Information Theory.

[46]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[47]  Nicolas Macris,et al.  The stochastic interpolation method: A simple scheme to prove replica formulas in Bayesian inference , 2017, ArXiv.

[48]  Galen Reeves,et al.  The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[49]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[50]  S. Stenholm Information, Physics and Computation, by Marc Mézard and Andrea Montanari , 2010 .

[51]  Ali Bereyhi,et al.  Stepwise Transmit Antenna Selection in Downlink Massive Multiuser MIMO , 2018, WSA.

[52]  Mikko Vehkaperä,et al.  Analysis of Regularized LS Reconstruction and Random Matrix Ensembles in Compressed Sensing , 2013, IEEE Transactions on Information Theory.

[53]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing , 2009, IEEE Transactions on Information Theory.

[54]  Ali Bereyhi,et al.  Asymptotics of nonlinear LSE precoders with applications to transmit antenna selection , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[55]  Viktor Dotsenko,et al.  Introduction to the Replica Theory of Disordered Statistical Systems: Introduction , 2000 .

[56]  Ali Bereyhi,et al.  Optimal Number of Transmit Antennas for Secrecy Enhancement in Massive MIMOME Channels , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[57]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[58]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[59]  Ralf R. Müller,et al.  Applications of Large Random Matrices in Communications Engineering , 2013, ArXiv.

[60]  Wei Yu,et al.  Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays , 2016, IEEE Journal of Selected Topics in Signal Processing.

[61]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[62]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[63]  Ralf R. Müller,et al.  Load modulated massive MIMO , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[64]  Lingyang Song,et al.  Energy Efficiency of Large-Scale Multiple Antenna Systems with Transmit Antenna Selection , 2014, IEEE Transactions on Communications.

[65]  Mérouane Debbah,et al.  Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? , 2013, IEEE Journal on Selected Areas in Communications.

[66]  F. Riesz,et al.  Sur Les Valeurs Moyennes Des Fonctions , 1930 .

[67]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[68]  M. Talagrand Mean Field Models for Spin Glasses , 2011 .