Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy
暂无分享,去创建一个
1 Introduction.- References.- 2 Light Scattering Apparatus.- 2.1. Introduction.- 2.2. Electromagnetic Waves.- 2.3. Light Scattering.- 2.3.1. Background.- 2.3.2. Fluctuations.- 2.3.3. The Coherence Area.- 2.3.4. Time Dependence.- 2.3.5. Local Oscillator.- 2.4. The Light Scattering Experiment.- 2.4.1. Introduction.- 2.4.2. The Light Source.- 2.4.3. The Spectrometer.- 2.4.4. The Detector.- 2.4.5. Signal Analyzers.- 2.5. Signal-to-Noise Ratio.- 2.5.1. Introduction.- 2.5.2. Effects due to Finite Intensity.- 2.5.3. Effects due to Finite Experiment Duration.- 2.5.4. Effects due to Unwanted Scattered Light.- 2.6. Data Analysis.- 2.6.1. Introduction.- 2.6.2. Selecting the Theoretical Form.- 2.6.3. Use of the ?2Test.- 2.6.4. Summary of Possible Forms.- 2.6.5. Polydispersity.- 2.7. Special Apparatus.- 2.7.1. Electrophoretic Light Scattering.- 2.7.2. Fabry-Perot Interferometers.- 2.7.3. Software Correlators.- 2.7.4. Cross-Correlation Experiment.- 2.8. Conclusions.- References and Notes.- 3 Dynamic Depolarized Light Scattering.- 3.1. Introduction.- 3.2. Principles of Depolarized Scattering.- 3.2.1. Scattering Configurations.- 3.2.2. Physical Principles.- 3.3 Rigid Macromolecules in Dilute Solution.- 3.3.1. Hydrodynamics of Rigid Macromolecules.- 3.3.2. Interferometric Studies.- 3.3.3. Photon Correlation Studies.- 3.4. Rod-Shaped Macromolecules in Semidilute Solutions.- 3.5. Flexible Macromolecules.- 3.6. Rotation of Small Molecules in Viscous Media.- 3.7. Resonance-Enhanced Depolarized Dynamic Light.- Scattering.- References and Notes.- 4 Particle Interactions.- 4.1. Introduction.- 4.2. Quantities Measured by Light Scattering.- 4.2.1. Introduction.- 4.2.2. Monodisperse Systems.- 4.2.3. Polydisperse Systems.- 4.2.4. Discussion.- 4.3.Theory.- 4.3.1. Introduction.- 4.3.2. Stokes-Einstein Relations.- 4.3.3. The Generalized Smoluchowski Equation.- 4.3.4. Hydrodynamic Interactions.- 4.3.5. Short-Time Motions.- 4.3.6. Projection Operator Analysis.- 4.3.7. Dynamics in the Small-q Limit-Cooperative and Self-Diffusion.- 4.4. Charged Particles in Dilute Suspension (Negligible Hydrodynamic Interactions).- 4.4.1. Introduction.- 4.4.2. Single-Particle Motions.- 4.4.3. The First Cumulant.- 4.4.4. Low-g Limit and the Effect of Polydispersity.- 4.4.5. Memory Effects.- 4.5. Effects of Hydrodynamic Interactions.- 4.5.1. Introduction.- 4.5.2. Theory of the Collective Diffusion Coefficient in the Hydrodynamic Regime.- 4.5.3. Experimental Results.- 4.5.4. Microemulsions.- 4.5.5. Hydrodynamic Effects at Finite q.- 4.6. Small-Ion Effects.- 4.7. Conclusions.- 4.8. Addendum.- References and Notes.- 5 Quasielastic Light Scattering from Dilute and Semidilute Polymer Solution.- 5.1. Introduction.- 5.2.The Single Chain.- 5.2.1. Basic Polymer Statistics.- 5.2.2. Dynamical Regimes.- 5.2.3. Center-of-Mass Diffusion (q R 1).- 5.2.4. Internal Dynamics and the Dynamic Structure Factor.- 5.3. Virial Regime.- 5.4. Semidilute Solutions.- 5.4.1. Introduction.- 5.4.2. Dynamical Regimes.- 5.4.3. Conclusions.- References.- 6Dynamic Light Scattering in Bulk Polymers.- 6.1. Introduction.- 6.2. Light Scattering.- 6.3. Sources of Light Scattering.- 6.4. Theory.- 6.5. Applications.- 6.5.1. Brillouin Spectroscopy.- 6.5.2. Dynamic Central Peaks.- 6.5.3. Depolarized Rayleigh Scattering.- 6.6. Conclusions.- References.- 7 Critical Phenomena.- 7.1. Introduction.- 7.2. Critical Fluctuations.- 7.2.1. Static Critical Behavior.- 7.2.2. Dynamic Critical Behavior.- 7.3. Depolarized Rayleigh Scattering.- 7.4 .Entropy Fluctuations.- 7.4.1. Entropy Rayleigh Factor.- 7.4.2. Local Entropy Fluctuations.- 7.5. Multicomponent Fluids.- 7.5.1. Ternary Liquid Mixtures.- 7.5.2. Binary Fluid in the Presence of Isotope Exchange...- 7.5.3. Tricritical Point Behavior.- 7.6. Spinodal Decomposition and Critical Behavior Induced by Shear Flow.- 7.6.1. Spinodal Decomposition.- 7.6.2. Critical Behavior Induced by Shear Flow.- References.- 8 Laser Light Scattering in Micellar Systems.- 8.1. Introduction.- 8.2. Theoretical Aspects of Deducing Micellar Size, Polydispersity, and Shape.- 8.3. Applications of Laser Light Scattering to Micellar Systems.- 8.3.1. Aqueous Synthetic Detergent Systems.- 8.3.2. Biological Micelles.- 8.3.3. Microemulsion and Inverted Micellar Systems.- 8.4. Summary.- References.- 9Light Scattering from Polymer Gels.- 9.1. Introduction.- 9.2. Collective Modes in Gels.- 9.2.1. Collective Diffusion in a Gel.- 9.2.2. Comparison between Diffusion of Polymers and Gels.- 9.2.3. Light Scattering from Collective Diffusion Modes in aGel.- 9.2.4. Comparison between Light Scattering and Swelling of Gels.- 9.3. Kirkwood-Risemann-Type Expression of Diffusion Coefficient.- 9.3.1. Gels in Good Solvent.- 9.3.2. Light Scattering from Gels in Good Solvents.- 9.4. Phase Transition in Gels.- 9.5. Conclusion.- References.- 10 Biological Applications.- 10.1. Introduction.- 10.2. Physical Principles of Quasielastic Light Scattering.- 10.2.1. Autocorrelation Function.- 10.2.2. Power Spectrum.- 10.2.3. Translational Diffusion.- 10.2.4. Uniform Translational Motion.- 10.2.5. Rotational and Internal Motions.- 10.2.6. Number Fluctuations.- 10.2.7. Transport Coefficients and Molecular Structure.- 10.3. Instrumentation and Data Analysis.- 10.3.1. Instrumentation.- 10.3.2. Polydispersity.- 10.3.3. Concentration Effects.- 10.3.4. Charge Effects.- 10.4. Macromolecular Characterization and Interactions.- 10.4.1. Proteins.- 10.4.2. NucleicAcids.- 10.4.3. Viruses.- 10.4.4. Polysaccharides and Proteoglycans.- 10.4.5. Vesicles and Protein-Membrane Complexes.- 10.4.6. Micelles.- 10.5. Physiological and Biomedical Applications.- 10.5.1. Cataracts.- 10.5.2. Immunoassay.- 10.5.3. CellSurfaces.- 10.5.4. Monolayers, Films, and Membranes.- 10.5.5. Gels and Entangled Solutions.- 10.5.6. Muscle.- 10.5.7. Biological Velocimetry.- 10.5.8. Motility.- 10.6. Conclusion.- References.