Symmetry and complexity in dynamical systems

Historically, static symmetric bodies and ornaments are geometric idealizations in the Platonic tradition. Actually, symmetries are locally and globally broken by phase transitions of instability in dynamical systems generating a variety of new order and partial symmetries with increasing complexity. The states of complex dynamical systems can refer to, for example, atomic clusters, crystals, biomolecules, organisms and brains, social and economic systems. The paper discusses dynamical balance as dynamical symmetry in dynamical systems, which can be simulated by computational systems. Its emergence is an interdisciplinary challenge of nonlinear systems science. The philosophy of science analyses the common methodological framework of symmetry and complexity.