The structure of plane graphs with independent crossings and its applications to coloring problems

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.

[1]  Jianfeng Hou,et al.  A Planar linear arboricity conjecture , 2009, J. Graph Theory.

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  Yue Zhao,et al.  On total 9-coloring planar graphs of maximum degree seven , 1999, J. Graph Theory.

[4]  Yue Zhao,et al.  Planar Graphs of Maximum Degree Seven are Class I , 2001, J. Comb. Theory B.

[5]  Jian-Liang Wu,et al.  On the linear arboricity of planar graphs , 1999 .

[6]  Jian-Liang Wu,et al.  The linear arboricity of planar graphs of maximum degree seven is four , 2008 .

[7]  Daniel Král,et al.  Coloring plane graphs with independent crossings , 2010, J. Graph Theory.

[8]  Xin Zhang,et al.  List edge and list total coloring of 1-planar graphs , 2012 .

[9]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[10]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[11]  F. Harary,et al.  Covering and packing in graphs. III: Cyclic and acyclic invariants , 1980 .

[12]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[13]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[14]  F. Harary COVERING AND PACKING IN GRAPHS, I. , 1970 .

[15]  Jian-Liang Wu On the linear arboricity of planar graphs , 1999, J. Graph Theory.

[16]  Ondrej Pangrác,et al.  5-Coloring Graphs with 4 Crossings , 2011, SIAM J. Discret. Math..

[17]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[18]  Xin Zhang,et al.  On edge colorings of 1-planar graphs , 2011, Inf. Process. Lett..

[19]  Oleg V. Borodin A new proof of the 6 color theorem , 1995, J. Graph Theory.

[20]  Xuechao Li Average degrees of critical graphs , 2005, Ars Comb..

[21]  Michael O. Albertson Chromatic number, independence ratio, and crossing number , 2008, Ars Math. Contemp..

[22]  Jian-Liang Wu,et al.  List-edge and list-total colorings of graphs embedded on hyperbolic surfaces , 2008, Discret. Math..

[23]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..