Biomediated Precipitation of Calcium Carbonate Metastable Phases in Hypogean Environments: A Short Review

Natural precipitates of metastable polymorphs of CaCO 3 , such as vaterite, are rarely found in nature however, they have been widely synthesized in laboratory under particular conditions (ie, supersaturated solutions, relative high temperatures, etc.). By SEM and XRD we recognize vaterite spherulites from culturable microbial colonies isolated from hypogean environments. Spherical bodies (∽10μin diameter), probably composed of vaterite, occur in submilimetric microbial mats and biofilms on volcanic substrates (Saint Callixtus Catacombs, Rome, Italy) and karstic caves (Altamira, Candamo, and Tito Bustillo caves, Spain, and Grotta dei Cervi, Italy) where cyanobacteria and actinomycetes are the major microbial components. These particles form beneath dense biofilms, where particular physicochemical conditions are developed by the microbial activity. Natural biofilms seems to generate microenvironments favoring the formation and preservation of metastable CaCO 3 polymorphs. This also shows a major role of microbes in processes of low-temperature alteration of different hypogean rock-substrates.

[1]  H. Elfil,et al.  Role of hydrate phases of calcium carbonate on the scaling phenomenon , 2001 .

[2]  H. Lowenstam,et al.  Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). , 1975, Science.

[3]  S. Mann,et al.  HABIT MODIFICATION IN SYNTHETIC CRYSTALS OF ARAGONITE AND VATERITE , 1995 .

[4]  Sergio Nappi,et al.  Ancient rendering mortars from a Brazilian palace: Its characteristics and microstructure , 2000 .

[5]  Kerry S. Smith,et al.  Carbonic Anhydrase: New Insights for an Ancient Enzyme* 210 , 2001, The Journal of Biological Chemistry.

[6]  G. P. Somov,et al.  Autotrophic assimilation of CO2 and C1-compounds by pathogenic bacteria. , 1999, Biochemistry. Biokhimiia.

[7]  C. Saiz-Jimenez,et al.  Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). , 1999, Journal of microbiological methods.

[8]  D. Kralj,et al.  Electrokinetic properties of spontaneously precipitated calcium carbonate polymorphs: the influence of organic substances , 2000 .

[9]  A. Chivas,et al.  Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica , 1991 .

[10]  C. Saiz-Jimenez,et al.  Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain) , 1999 .

[11]  S. Komarneni,et al.  Controlled crystallization of vaterite from viscous solutions of organic colloids , 1990 .

[12]  Stephen Mann,et al.  Controlled crystallization of CaCO3 under stearic acid monolayers , 1988, Nature.

[13]  C Saiz-Jimenez,et al.  Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo). , 1999, Journal of microbiological methods.

[14]  M. Edington,et al.  Bacterial calcification in limestone caves , 1983 .

[15]  G. Callot,et al.  Inter-relations entre aiguilles de calcite et hyphes mycéliens , 1985 .

[16]  Claude Gabrielli,et al.  Nucleation and growth of calcium carbonate by an electrochemical scaling process , 1999 .

[17]  M. Monte,et al.  Biodeterioration in subterranean environments , 1993 .

[18]  R. Juliá,et al.  Microbial Biscuits of Vaterite in Lake Issyk-Kul (Republic of Kyrgyzstan) , 2001 .

[19]  E. Dalas,et al.  Spontaneous precipitation of calcium carbonate in the presence of chondroitin sulfate , 2000 .

[20]  H. Kagi,et al.  Effects of Trace Lanthanum Ion on the Stability of Vaterite and Transformation from Vaterite to Calcite in an Aquatic System , 2001 .

[21]  E. Escolar,et al.  Crystalline composition of equine urinary sabulous deposits. , 1995, Scanning microscopy.

[22]  N. Spanos,et al.  Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite , 1999 .

[23]  A. J. Easton,et al.  Variations in a growth form of synthetic vaterite , 1986, Mineralogical Magazine.

[24]  Carol A. Hill,et al.  Cave Minerals of the World , 1976 .

[25]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[26]  S. Sánchez-Moral,et al.  Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain) , 1998 .

[27]  David L. Parkhurst,et al.  A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines , 1988 .

[28]  J. Ferry,et al.  Prokaryotic carbonic anhydrases. , 2000, FEMS microbiology reviews.

[29]  D. Kralj,et al.  The influence of some naturally occurring minerals on the precipitation of calcium carbonate polymorphs , 2000 .

[30]  Henry L. Ehrlich,et al.  GEOMICROBIOLOGY: ITS SIGNIFICANCE FOR GEOLOGY , 1998 .

[31]  G. Falini Crystallization of calcium carbonates in biologically inspired collagenous matrices , 2000 .

[32]  C. Saiz-Jimenez,et al.  Microorganisms and Microbially Induced Fabrics in Cave Walls , 2001 .

[33]  W. Fyfe,et al.  Geomicrobiology of carbonate–silicate microbialites from Hawaiian basaltic sea caves , 2000 .

[34]  K. C. Lee,et al.  Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer , 1997 .

[35]  R. Donahoe,et al.  Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China , 2000 .

[36]  L. Brečević,et al.  Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation , 1997 .

[37]  L. Dupont,et al.  Synthesis and study of a well crystallized CaCO3vaterite showing a new habitus , 1997 .

[38]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[39]  R. Miyawaki,et al.  Vaterite after ikaite in carbonate sediment. , 1999 .

[40]  C. Newcomb,et al.  The composition of urinary calculi , 1930 .

[41]  J. Bischoff Catalysis, inhibition, and the calcite-aragonite problem; [Part] 2, The vaterite-aragonite transformation , 1968 .

[42]  M. Euvrard,et al.  A cell to study in situ electrocrystallization of calcium carbonate , 2000 .

[43]  Takeshi Ogino,et al.  The formation and transformation mechanism of calcium carbonate in water , 1987 .

[44]  A. Gorbushina,et al.  Biodecay of cultural heritage as a space/time-related ecological situation — an evaluation of a series of studies , 2000 .

[45]  E. B. Shirling,et al.  Methods for characterization of Streptomyces species , 1966 .

[46]  D. Northup,et al.  Geomicrobiology of Caves: A Review , 2001 .

[47]  É. Verrecchia,et al.  Needle-fiber Calcite: A Critical Review and a Proposed Classification , 1994 .

[48]  C. Saiz-Jimenez,et al.  Geomicrobiological Study of the Grotta dei Cervi, Porto Badisco, Italy , 2001 .

[49]  G. Friedman,et al.  Precipitation of vaterite (CaCO3) during oil field drilling , 1994, Mineralogical Magazine.

[50]  S. Sánchez-Moral,et al.  Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. , 1999, The Science of the total environment.

[51]  D. Hood,et al.  The influence of organic material on the polymorphic crystallization of calcium carbonate , 1965 .