Person-following UAVs

We consider the design of vision-based control algorithms for unmanned aerial vehicles (UAVs), so as to enable a UAV to autonomously follow a person. A new vision-based control architecture is proposed with the goals of 1) robustly following the user and 2) implementing following behaviors programmed by manipulation of visual patterns. This is achieved within a detection/tracking paradigm, where the target is a programmable badge worn by the user. This badge contains a visual pattern with two components. The first is fixed and used to locate the user. The second is variable and implements a code used to program the UAV behavior. A biologically inspired tracking/recognition architecture, combining bottom-up and top-down saliency mechanisms, a novel image similarity measure, and an affine validation procedure, is proposed to detect the badge in the scene. The badge location is used by a control algorithm to adjust the UAV flight parameters so as to maintain the user in the center of the field of view. The detected badge is further analyzed to extract the visual code that commands the UAV behavior This is used to control the height and distance of the UAV relative to the user.

[1]  Nuno Vasconcelos,et al.  Biologically Inspired Object Tracking Using Center-Surround Saliency Mechanisms , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[5]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[6]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[9]  Ronald Poppe,et al.  A survey on vision-based human action recognition , 2010, Image Vis. Comput..

[10]  Nuno Vasconcelos,et al.  Learning Complexity-Aware Cascades for Deep Pedestrian Detection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[14]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  Joaquim Salvi,et al.  The SLAM problem: a survey , 2008, CCIA.

[17]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[18]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[19]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[20]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[21]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[22]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[23]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[25]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[26]  Bharti Bansal,et al.  Gesture Recognition: A Survey , 2016 .

[27]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[30]  Avinash C. Kak,et al.  Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing , 1998, IEEE Trans. Robotics Autom..

[31]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[32]  Ashutosh Saxena,et al.  High speed obstacle avoidance using monocular vision and reinforcement learning , 2005, ICML.

[33]  Nuno Vasconcelos,et al.  Recognizing Activities via Bag of Words for Attribute Dynamics , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Ying Wu,et al.  Vision-Based Gesture Recognition: A Review , 1999, Gesture Workshop.

[35]  Nuno Vasconcelos,et al.  Decision-Theoretic Saliency: Computational Principles, Biological Plausibility, and Implications for Neurophysiology and Psychophysics , 2009, Neural Computation.

[36]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..